Innovation in Osteogenesis Activation: Role of Marine-Derived Materials in Bone Regeneration

Marine-derived biomaterials are emerging as promising candidates for tissue regeneration due to their sustainability, biocompatibility, bioactivity, and unique chemical structure. This review provides an overview of different marine-derived inorganic and organic materials, such as calcium carbonate,...

Full description

Saved in:
Bibliographic Details
Main Authors: Maria Giovanna Rizzo, Marilena Briglia, Vincenzo Zammuto, Dario Morganti, Caterina Faggio, Federica Impellitteri, Cristiana Roberta Multisanti, Adriana Carol Eleonora Graziano
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Current Issues in Molecular Biology
Subjects:
Online Access:https://www.mdpi.com/1467-3045/47/3/175
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Marine-derived biomaterials are emerging as promising candidates for tissue regeneration due to their sustainability, biocompatibility, bioactivity, and unique chemical structure. This review provides an overview of different marine-derived inorganic and organic materials, such as calcium carbonate, magnesium salts, silica, polysaccharides, bioactive peptides, and lipid-based compounds, and their effects in promoting osteogenesis. Specifically, the osteoinductive, osteoconductive, and osteointegrative activities of traditional and innovative materials that influence key molecular pathways such as BMP/Smad and Wnt/β-catenin signaling underlying bone formation will be evaluated. This review also prospects innovative approaches, i.e., phage display technology, to optimize marine-derived peptides for targeted bone regeneration. In the context of innovative and sustainable materials, this review suggests some interesting applications of unusual materials able to overcome the limitations of conventional ones and stimulate cellular regeneration of bone tissue by activating specific molecular pathways.
ISSN:1467-3037
1467-3045