Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra
In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/14/1/7 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula>. Additionally, we prove that all LB structures on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> possess a triangular coboundary. We also quantize <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> using the Drinfeld-twist quantization technique and identify a group of noncommutative algebras and noncocommutative Hopf algebras. |
---|---|
ISSN: | 2075-1680 |