Lie Bialgebra Structures and Quantization of Generalized Loop Planar Galilean Conformal Algebra

In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu Yang, Xingtao Wang
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we analyze the Lie bialgebra (LB) and quantize the generalized loop planar-Galilean conformal algebra (GLPGCA) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula>. Additionally, we prove that all LB structures on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> possess a triangular coboundary. We also quantize <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mo>Γ</mo><mo>)</mo></mrow></semantics></math></inline-formula> using the Drinfeld-twist quantization technique and identify a group of noncommutative algebras and noncocommutative Hopf algebras.
ISSN:2075-1680