Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters

Abstract The fundamental bandgap E g of a semiconductor—often determined by means of optical spectroscopy—represents its characteristic fingerprint and changes distinctively with temperature. Here, we demonstrate that in magic sized II-VI clusters containing only 26 atoms, a pronounced weakening of...

Full description

Saved in:
Bibliographic Details
Main Authors: Franziska Münzer, Severin Lorenz, Jiwoong Yang, Taufik Adi Nugraha, Emilio Scalise, Taeghwan Hyeon, Stefan Wippermann, Gerd Bacher
Format: Article
Language:English
Published: Nature Portfolio 2020-08-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-17563-0
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850206185484976128
author Franziska Münzer
Severin Lorenz
Jiwoong Yang
Taufik Adi Nugraha
Emilio Scalise
Taeghwan Hyeon
Stefan Wippermann
Gerd Bacher
author_facet Franziska Münzer
Severin Lorenz
Jiwoong Yang
Taufik Adi Nugraha
Emilio Scalise
Taeghwan Hyeon
Stefan Wippermann
Gerd Bacher
author_sort Franziska Münzer
collection DOAJ
description Abstract The fundamental bandgap E g of a semiconductor—often determined by means of optical spectroscopy—represents its characteristic fingerprint and changes distinctively with temperature. Here, we demonstrate that in magic sized II-VI clusters containing only 26 atoms, a pronounced weakening of the bonds occurs upon optical excitation, which results in a strong exciton-driven shift of the phonon spectrum. As a consequence, a drastic increase of dE g/dT (up to a factor of 2) with respect to bulk material or nanocrystals of typical size is found. We are able to describe our experimental data with excellent quantitative agreement from first principles deriving the bandgap shift with temperature as the vibrational entropy contribution to the free energy difference between the ground and optically excited states. Our work demonstrates how in small nanoparticles, photons as the probe medium affect the bandgap—a fundamental semiconductor property.
format Article
id doaj-art-e33292bd4c844f4a9e17e51bcdfbcdc0
institution OA Journals
issn 2041-1723
language English
publishDate 2020-08-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-e33292bd4c844f4a9e17e51bcdfbcdc02025-08-20T02:10:54ZengNature PortfolioNature Communications2041-17232020-08-011111710.1038/s41467-020-17563-0Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclustersFranziska Münzer0Severin Lorenz1Jiwoong Yang2Taufik Adi Nugraha3Emilio Scalise4Taeghwan Hyeon5Stefan Wippermann6Gerd Bacher7Werkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-EssenWerkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-EssenCenter for Nanoparticle Research, Institute for Basic Science (IBS)Max-Planck-Institut für EisenforschungMax-Planck-Institut für EisenforschungCenter for Nanoparticle Research, Institute for Basic Science (IBS)Max-Planck-Institut für EisenforschungWerkstoffe der Elektrotechnik and CENIDE, Universität Duisburg-EssenAbstract The fundamental bandgap E g of a semiconductor—often determined by means of optical spectroscopy—represents its characteristic fingerprint and changes distinctively with temperature. Here, we demonstrate that in magic sized II-VI clusters containing only 26 atoms, a pronounced weakening of the bonds occurs upon optical excitation, which results in a strong exciton-driven shift of the phonon spectrum. As a consequence, a drastic increase of dE g/dT (up to a factor of 2) with respect to bulk material or nanocrystals of typical size is found. We are able to describe our experimental data with excellent quantitative agreement from first principles deriving the bandgap shift with temperature as the vibrational entropy contribution to the free energy difference between the ground and optically excited states. Our work demonstrates how in small nanoparticles, photons as the probe medium affect the bandgap—a fundamental semiconductor property.https://doi.org/10.1038/s41467-020-17563-0
spellingShingle Franziska Münzer
Severin Lorenz
Jiwoong Yang
Taufik Adi Nugraha
Emilio Scalise
Taeghwan Hyeon
Stefan Wippermann
Gerd Bacher
Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters
Nature Communications
title Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters
title_full Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters
title_fullStr Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters
title_full_unstemmed Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters
title_short Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters
title_sort exciton driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters
url https://doi.org/10.1038/s41467-020-17563-0
work_keys_str_mv AT franziskamunzer excitondrivenchangeofphononmodescausesstrongtemperaturedependentbandgapshiftinnanoclusters
AT severinlorenz excitondrivenchangeofphononmodescausesstrongtemperaturedependentbandgapshiftinnanoclusters
AT jiwoongyang excitondrivenchangeofphononmodescausesstrongtemperaturedependentbandgapshiftinnanoclusters
AT taufikadinugraha excitondrivenchangeofphononmodescausesstrongtemperaturedependentbandgapshiftinnanoclusters
AT emilioscalise excitondrivenchangeofphononmodescausesstrongtemperaturedependentbandgapshiftinnanoclusters
AT taeghwanhyeon excitondrivenchangeofphononmodescausesstrongtemperaturedependentbandgapshiftinnanoclusters
AT stefanwippermann excitondrivenchangeofphononmodescausesstrongtemperaturedependentbandgapshiftinnanoclusters
AT gerdbacher excitondrivenchangeofphononmodescausesstrongtemperaturedependentbandgapshiftinnanoclusters