Adaptive Analysis of Ecosystem Stability in China to Soil Moisture Variations: A Perspective Based on Climate Zoning and Land Use Types

In this study, we investigate the impact of soil moisture at varying depths on the stability of Chinese ecosystems, with ecosystem stability assessed using the Enhanced Vegetation Index (EVI) and Gross Primary Productivity (GPP). A multi-perspective analysis is conducted across different climatic zo...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuanbo Lu, Yang Yu, Xiaoyun Ding, Lingxiao Sun, Chunlan Li, Jing He, Zengkun Guo, Ireneusz Malik, Malgorzata Wistuba, Ruide Yu
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/12/1971
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we investigate the impact of soil moisture at varying depths on the stability of Chinese ecosystems, with ecosystem stability assessed using the Enhanced Vegetation Index (EVI) and Gross Primary Productivity (GPP). A multi-perspective analysis is conducted across different climatic zones and land cover types. Sen’s Slope Estimation and the Mann–Kendall trend test, combined with linear regression and correlation analyses, are employed to analyze the long-term trends of EVI and GPP in different climatic zones and land cover types and to assess the effects of soil moisture changes on ecosystem stability. The research reveals the following findings: (1) On a national scale, both EVI and GPP exhibit positive growth trends, with more significant increases in humid areas and relatively slower growth in arid areas. In addition, EVI and GPP of different land cover types exhibit positive inter-annual variation trends, reflecting a gradual enhancement in ecosystem productivity. (2) Cluster analysis shows that EVI has strong spatial correlation, with a distribution pattern of low–low (L-L) clusters in the north and high–high (H-H) clusters in the south. L-H clusters are concentrated in the Huaihai, Southwest Rivers, and Pearl River basins, while H-L clusters are scattered along the eastern coast. The spatial correlation of GPP is mainly concentrated in the south and the northeast, with a distribution pattern of L-L in the northeast, L-H in the Yangtze River basin, and H-H in the south. H-L clusters are dispersed in the downstream area of the Yangtze River. Both EVI and GPP show a tendency for high-value aggregation in space, with high-value areas of EVI located in the south and low-value areas in the central and western regions. High-value areas of GPP are in the south, while low-value areas are in the northeast, particularly in the Yangtze River Delta. (3) The correlation between EVI, GPP, and soil moisture varies significantly across different climatic regions. Arid and semi-humid regions show significant correlations between specific soil moisture depths and EVI and GPP, while such correlations are not significant in humid regions. The EVI and GPP values of croplands and grasslands are significantly and negatively correlated with soil moisture at depths of 150–200 cm (SM4). Conversely, wetland GPP values increase significantly with increasing soil moisture. Other vegetation types do not show significant correlations with soil moisture. The results of this study provide an important basis for understanding the impact of climate change on ecosystem stability and offer scientific guidance for ecological protection and water resource management.
ISSN:2072-4292