LncRNA-miRNA interplay regulate intestinal regeneration in the sea cucumber Apostichopus japonicus

The sea cucumber Apostichopus japonicus, renowned for its remarkable ability to expel and regenerate its internal organs within weeks, serves as a model organism for regeneration research. However, studies on the role of non-coding RNAs, particularly long non-coding RNA (lncRNA), in intestinal regen...

Full description

Saved in:
Bibliographic Details
Main Authors: Fang Su, Igor Yu. Dolmatov, Tianming Wang, Hongsheng Yang, Kui Ding, Libin Zhang, Lina Sun
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Computational and Structural Biotechnology Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2001037025001163
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The sea cucumber Apostichopus japonicus, renowned for its remarkable ability to expel and regenerate its internal organs within weeks, serves as a model organism for regeneration research. However, studies on the role of non-coding RNAs, particularly long non-coding RNA (lncRNA), in intestinal regeneration remain limited. In this study, we identified and performed differential expression analysis of lncRNAs in both normal intestines and intestines at 3 days post evisceration (dpe). A total of 2361 lncRNAs were identified, 183 of which were differentially expressed (DE-lncRNAs). The genes targeted by these lncRNAs, either cis- or trans-acting, were involved in oxidative stress, immune response, extracellular matrix remodeling, and energy metabolism during intestinal regeneration. Notably, MSTRG.6200/miR-7847–3p and MSTRG.18440/miR-4220–5p have been confirmed as interacting lncRNA-miRNA pairs. These results suggest that lncRNAs are key regulators of intestinal regeneration in A. japonicus, offering new insights into the underlying mechanisms and potential targets for enhancing regeneration.
ISSN:2001-0370