Chemical catalyst manipulating cancer epigenome and transcription

Abstract The number and variety of identified histone post-translational modifications (PTMs) are continually increasing. However, the specific consequences of each histone PTM remain largely unclear, primarily due to the lack of methods for selectively and rapidly introducing a desired histone PTM...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuki Yamanashi, Shinpei Takamaru, Atsushi Okabe, Satoshi Kaito, Yuto Azumaya, Yugo R. Kamimura, Kenzo Yamatsugu, Tomoya Kujirai, Hitoshi Kurumizaka, Atsushi Iwama, Atsushi Kaneda, Shigehiro A. Kawashima, Motomu Kanai
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-56204-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The number and variety of identified histone post-translational modifications (PTMs) are continually increasing. However, the specific consequences of each histone PTM remain largely unclear, primarily due to the lack of methods for selectively and rapidly introducing a desired histone PTM in living cells without genetic engineering. Here, we report the development of a cell-permeable histone acetylation catalyst, BAHA-LANA-PEG-CPP44, which selectively enters leukemia cells, binds to chromatin, and acetylates H2BK120 of endogenous histones in a short reaction time. Time-course analyses of this in-cell catalytic reaction revealed that H2BK120 acetylation attenuates the chromatin binding of negative elongation factor E (NELFE), an onco-transcription factor. This H2BK120 acetylation-mediated removal of NELFE from chromatin reshapes transcription, slows leukemia cell viability, and reduces their tumorigenic potential in mice. Therefore, this histone acetylation catalyst provides a unique tool for elucidating the time-resolved consequences of histone PTMs and may offer a modality for cancer chemotherapy.
ISSN:2041-1723