Timestamp-Guided Knowledge Distillation for Robust Sensor-Based Time-Series Forecasting

Accurate time-series forecasting plays a vital role in sensor-driven applications such as energy monitoring, traffic flow prediction, and environmental sensing. While most existing approaches focus on extracting local patterns from historical observations, they often overlook the global temporal inf...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiahe Yan, Honghui Li, Yanhui Bai, Jie Liu, Hairui Lv, Yang Bai
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/15/4590
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accurate time-series forecasting plays a vital role in sensor-driven applications such as energy monitoring, traffic flow prediction, and environmental sensing. While most existing approaches focus on extracting local patterns from historical observations, they often overlook the global temporal information embedded in timestamps. However, this information represents a valuable yet underutilized aspect of sensor-based data that can significantly enhance forecasting performance. In this paper, we propose a novel timestamp-guided knowledge distillation framework (TKDF), which integrates both historical and timestamp information through mutual learning between heterogeneous prediction branches to improve forecasting robustness. The framework comprises two complementary branches: a Backbone Model that captures local dependencies from historical sequences, and a Timestamp Mapper that learns global temporal patterns encoded in timestamp features. To enhance information transfer and reduce representational redundancy, a self-distillation mechanism is introduced within the Timestamp Mapper. Extensive experiments on multiple real-world sensor datasets—covering electricity consumption, traffic flow, and meteorological measurements—demonstrate that the TKDF consistently improves the performance of mainstream forecasting models.
ISSN:1424-8220