Implementation of Fractal Dimension and Self-Organizing Map to Detect Toxic Effects of Toluene on Movement Tracks of Daphnia magna

Movement behaviors of an indicator species, Daphnia magna, in response to contaminants have been implemented to monitor environmental disturbances. Complexity in movement tracks of Daphnia magna was characterized by use of fractal dimension and self-organizing map. The individual movement tracks of...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuedan Liu, Chunlei Xia, Zhongya Fan, Renren Wu, Xianglin Chen, Zuoyi Liu
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Toxicology
Online Access:http://dx.doi.org/10.1155/2018/2637209
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Movement behaviors of an indicator species, Daphnia magna, in response to contaminants have been implemented to monitor environmental disturbances. Complexity in movement tracks of Daphnia magna was characterized by use of fractal dimension and self-organizing map. The individual movement tracks of D. magna were continuously recorded for 24 hours before and after treatments with toluene at the concentration of 10 mg/L, respectively. The general complexity in movement tracks (10 minutes) was characterized by fractal dimension. Results showed that average fractal dimension of movement tracks was decreased from 1.62 to 1.22 after treatments. The instantaneous movement parameters of movement segments in 5 s were input into the self-organizing map to investigate the swimming pattern changes under stresses of toluene. Abnormal behaviors of D. magna are more frequently observed after treatments than before treatments. Computational methods in ecological informatics could be utilized to obtain the useful information in behavioral data of D. magna and would be further applied as an in situ monitoring tool in water environment.
ISSN:1687-8191
1687-8205