Local and global solvability of fractional porous medium equations in critical Besov-Morrey spaces
In this article we study fractional porous medium equations in Besov-Morrey spaces. Using the Littlewood-Paley theory and the smoothing effect of the heat semi-group, we obtain local well-posedness of this model. Also, we obtain global well-posedness for small initial data in the critical Besov-M...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Texas State University
2025-08-01
|
| Series: | Electronic Journal of Differential Equations |
| Subjects: | |
| Online Access: | http://ejde.math.txstate.edu/Volumes/2025/80/abstr.html |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this article we study fractional porous medium equations in
Besov-Morrey spaces. Using the Littlewood-Paley theory and the smoothing effect of
the heat semi-group, we obtain local well-posedness of this model.
Also, we obtain global well-posedness for small initial data in the critical
Besov-Morrey spaces $ \dot{\mathcal{N}}_{p,h,\infty}^{-2m+\frac{n}{p}}(\mathbb{R}^n)$
with $1/2<m< 1$, $\max\{ 1,\frac{n}{2m}\} <p<\infty$ and $1\leq h\leq p$. |
|---|---|
| ISSN: | 1072-6691 |