Dopant Diffusion‐Induced Dielectric Breakdown: Stacked Dielectric Reliability on Heavily Doped Polysilicon

Abstract This study identifies a novel failure mode in silicon dioxide/silicon nitride (SiO₂/Si₃N₄) capacitors caused by dopant diffusion in heavily doped polysilicon substrates. Under identical thermal oxidation conditions, the interfacial oxide layer is significantly thinner on p type polysilicon...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuo Wang, Zebin Kong, Jie Zhao, Shukai Guan, Ranran Zhao, Anan Ju, Kunshu Wang, Pengfei Lian
Format: Article
Language:English
Published: Wiley-VCH 2025-08-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.202500046
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849397297564090368
author Shuo Wang
Zebin Kong
Jie Zhao
Shukai Guan
Ranran Zhao
Anan Ju
Kunshu Wang
Pengfei Lian
author_facet Shuo Wang
Zebin Kong
Jie Zhao
Shukai Guan
Ranran Zhao
Anan Ju
Kunshu Wang
Pengfei Lian
author_sort Shuo Wang
collection DOAJ
description Abstract This study identifies a novel failure mode in silicon dioxide/silicon nitride (SiO₂/Si₃N₄) capacitors caused by dopant diffusion in heavily doped polysilicon substrates. Under identical thermal oxidation conditions, the interfacial oxide layer is significantly thinner on p type polysilicon compared to n type polysilicon. N type capacitors exhibit superior performance, with a breakdown voltage of 88 V, whereas p type capacitors demonstrate lower breakdown voltage of 51 V. The time‐dependent dielectric breakdown (TDDB) analysis indicates that n type capacitors exhibit lifetimes exceeding 10 years under high‐voltage stress at 125 °C. In contrast, p type capacitors demonstrate rapid failure when subjected to a voltage of 30 V. Conduction analysis reveals that Poole–Frenkel conduction dominates the stacked dielectric layers, but thinning of the interfacial oxide layer significantly increases Fowler–Nordheim tunneling, ultimately driving stacked dielectric breakdown. These findings highlight the critical role of dopant diffusion in interfacial oxide reliability and provide insights for improving the performance of high‐k stacked dielectrics in heavily doped polysilicon.
format Article
id doaj-art-e23bc4143bc646eeae4e1b1960ceb1fe
institution Kabale University
issn 2199-160X
language English
publishDate 2025-08-01
publisher Wiley-VCH
record_format Article
series Advanced Electronic Materials
spelling doaj-art-e23bc4143bc646eeae4e1b1960ceb1fe2025-08-20T03:39:04ZengWiley-VCHAdvanced Electronic Materials2199-160X2025-08-011112n/an/a10.1002/aelm.202500046Dopant Diffusion‐Induced Dielectric Breakdown: Stacked Dielectric Reliability on Heavily Doped PolysiliconShuo Wang0Zebin Kong1Jie Zhao2Shukai Guan3Ranran Zhao4Anan Ju5Kunshu Wang6Pengfei Lian7Shanghai Aerospace Technology Fundamental Institute Shanghai 201109 ChinaShanghai Aerospace Technology Fundamental Institute Shanghai 201109 ChinaXi'an Microelectronic Technology Institute Xi'an 710065 ChinaSchool of Reliability and Systems Engineering Beihang University Beijing 100032 ChinaShanghai Aerospace Technology Fundamental Institute Shanghai 201109 ChinaShanghai Aerospace Technology Fundamental Institute Shanghai 201109 ChinaShanghai Aerospace Technology Fundamental Institute Shanghai 201109 ChinaSchool of Integrated Circuits East China Normal University Shanghai 200241 ChinaAbstract This study identifies a novel failure mode in silicon dioxide/silicon nitride (SiO₂/Si₃N₄) capacitors caused by dopant diffusion in heavily doped polysilicon substrates. Under identical thermal oxidation conditions, the interfacial oxide layer is significantly thinner on p type polysilicon compared to n type polysilicon. N type capacitors exhibit superior performance, with a breakdown voltage of 88 V, whereas p type capacitors demonstrate lower breakdown voltage of 51 V. The time‐dependent dielectric breakdown (TDDB) analysis indicates that n type capacitors exhibit lifetimes exceeding 10 years under high‐voltage stress at 125 °C. In contrast, p type capacitors demonstrate rapid failure when subjected to a voltage of 30 V. Conduction analysis reveals that Poole–Frenkel conduction dominates the stacked dielectric layers, but thinning of the interfacial oxide layer significantly increases Fowler–Nordheim tunneling, ultimately driving stacked dielectric breakdown. These findings highlight the critical role of dopant diffusion in interfacial oxide reliability and provide insights for improving the performance of high‐k stacked dielectrics in heavily doped polysilicon.https://doi.org/10.1002/aelm.202500046dopant diffusionfailure analysis (FA)heavily doped polysilicon oxidationstacked dielectricreliabilityTDDB
spellingShingle Shuo Wang
Zebin Kong
Jie Zhao
Shukai Guan
Ranran Zhao
Anan Ju
Kunshu Wang
Pengfei Lian
Dopant Diffusion‐Induced Dielectric Breakdown: Stacked Dielectric Reliability on Heavily Doped Polysilicon
Advanced Electronic Materials
dopant diffusion
failure analysis (FA)
heavily doped polysilicon oxidation
stacked dielectric
reliability
TDDB
title Dopant Diffusion‐Induced Dielectric Breakdown: Stacked Dielectric Reliability on Heavily Doped Polysilicon
title_full Dopant Diffusion‐Induced Dielectric Breakdown: Stacked Dielectric Reliability on Heavily Doped Polysilicon
title_fullStr Dopant Diffusion‐Induced Dielectric Breakdown: Stacked Dielectric Reliability on Heavily Doped Polysilicon
title_full_unstemmed Dopant Diffusion‐Induced Dielectric Breakdown: Stacked Dielectric Reliability on Heavily Doped Polysilicon
title_short Dopant Diffusion‐Induced Dielectric Breakdown: Stacked Dielectric Reliability on Heavily Doped Polysilicon
title_sort dopant diffusion induced dielectric breakdown stacked dielectric reliability on heavily doped polysilicon
topic dopant diffusion
failure analysis (FA)
heavily doped polysilicon oxidation
stacked dielectric
reliability
TDDB
url https://doi.org/10.1002/aelm.202500046
work_keys_str_mv AT shuowang dopantdiffusioninduceddielectricbreakdownstackeddielectricreliabilityonheavilydopedpolysilicon
AT zebinkong dopantdiffusioninduceddielectricbreakdownstackeddielectricreliabilityonheavilydopedpolysilicon
AT jiezhao dopantdiffusioninduceddielectricbreakdownstackeddielectricreliabilityonheavilydopedpolysilicon
AT shukaiguan dopantdiffusioninduceddielectricbreakdownstackeddielectricreliabilityonheavilydopedpolysilicon
AT ranranzhao dopantdiffusioninduceddielectricbreakdownstackeddielectricreliabilityonheavilydopedpolysilicon
AT ananju dopantdiffusioninduceddielectricbreakdownstackeddielectricreliabilityonheavilydopedpolysilicon
AT kunshuwang dopantdiffusioninduceddielectricbreakdownstackeddielectricreliabilityonheavilydopedpolysilicon
AT pengfeilian dopantdiffusioninduceddielectricbreakdownstackeddielectricreliabilityonheavilydopedpolysilicon