Impact of high pressure impregnation and air drying on the quality of Dosidicus gigas slices

Abstract Humboldt squid (Dosidicus gigas) is the most abundant cephalopod in the fishing industry, and its high nutritional and organoleptic properties make it a go-to food product for consumers. Therefore, developing new processing techniques seems imperative to minimize quality deterioration and p...

Full description

Saved in:
Bibliographic Details
Main Authors: Liliana Zura-Bravo, Roberto Lemus-Mondaca, Jaime Ortiz, Marcos Flores, Gipsy Tabilo-Munizaga, Mario Pérez-Won, Klaudia Masztalerz
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-87647-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Humboldt squid (Dosidicus gigas) is the most abundant cephalopod in the fishing industry, and its high nutritional and organoleptic properties make it a go-to food product for consumers. Therefore, developing new processing techniques seems imperative to minimize quality deterioration and provide products with appropriate characteristics. The study aimed to determine the effect of high-pressure impregnation (HPI) pretreatment on hot air-drying kinetics and the quality of Humboldt squid slices. Various pressures, times, and concentrations of osmotic solution during HPI were evaluated, followed by drying at 40 and 60 °C. The HPI pretreatment reduced the drying time by around 26% when dried at 40 °C, and only 18% when dried at⋅ 60 °C compared with unpretreated samples. The Weibull, Page, and Logarithmic models were considered for experimental drying curve modeling. Diffusion coefficient values varied from 3.82 to 6.59 × 10−9 m2/s for all drying conditions. Moreover, the color, texture, and water-holding capacity were determined. Rehydration capacity values increased due to less damage to cellular tissue than the control (HPI-untreated dried samples). Also, scanning electron microscope (SEM) images showed a compacted structure of HPI-dried squid samples. Overall, HPI proved to be a beneficial pretreatment as it reduced drying time and improved the quality characteristics of Humboldt squid.
ISSN:2045-2322