Introducing neuromodulation in deep neural networks to learn adaptive behaviours.

Animals excel at adapting their intentions, attention, and actions to the environment, making them remarkably efficient at interacting with a rich, unpredictable and ever-changing external world, a property that intelligent machines currently lack. Such an adaptation property relies heavily on cellu...

Full description

Saved in:
Bibliographic Details
Main Authors: Nicolas Vecoven, Damien Ernst, Antoine Wehenkel, Guillaume Drion
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://storage.googleapis.com/plos-corpus-prod/10.1371/journal.pone.0227922/1/pone.0227922.pdf?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=wombat-sa%40plos-prod.iam.gserviceaccount.com%2F20210219%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20210219T120936Z&X-Goog-Expires=3600&X-Goog-SignedHeaders=host&X-Goog-Signature=af05e7a09ac436a7f2a0d512caf0b0b754a47b2d7d6354bf119bc68c7c9651a3af7a3b98e5c821017e79f4ac5aca38af7eee80c061e8334773ff53947ed2559e53c40c87ac574623ea32479f510ce397e30c285f6f15479a18671d7498b3ab6d7a2ae64d2ff3220dcccbad2d02741c1f1832af675898af233059acf487428367808d27f212ff5856b4b6a309c977af82b50963db8c672c3136e633f1eb5d1f2e7a96b711e8ba0ed61e9441b7cfbe1e5979b1e31f3daa05c0c1d476496e55a5695f6d998db181bd3cd35013a4083555751fe8f7c5f4d102f9d3466e35ad1d44d1a133342435534bdfffd967a000f7a4b925b69356706ba481a5d65191c9cd3326
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850205672523694080
author Nicolas Vecoven
Damien Ernst
Antoine Wehenkel
Guillaume Drion
author_facet Nicolas Vecoven
Damien Ernst
Antoine Wehenkel
Guillaume Drion
author_sort Nicolas Vecoven
collection DOAJ
description Animals excel at adapting their intentions, attention, and actions to the environment, making them remarkably efficient at interacting with a rich, unpredictable and ever-changing external world, a property that intelligent machines currently lack. Such an adaptation property relies heavily on cellular neuromodulation, the biological mechanism that dynamically controls intrinsic properties of neurons and their response to external stimuli in a context-dependent manner. In this paper, we take inspiration from cellular neuromodulation to construct a new deep neural network architecture that is specifically designed to learn adaptive behaviours. The network adaptation capabilities are tested on navigation benchmarks in a meta-reinforcement learning context and compared with state-of-the-art approaches. Results show that neuromodulation is capable of adapting an agent to different tasks and that neuromodulation-based approaches provide a promising way of improving adaptation of artificial systems.
format Article
id doaj-art-e2010d89f7ec4aefb63cdb6ae520fcaa
institution OA Journals
issn 1932-6203
language English
publishDate 2020-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-e2010d89f7ec4aefb63cdb6ae520fcaa2025-08-20T02:11:01ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01151e022792210.1371/journal.pone.0227922Introducing neuromodulation in deep neural networks to learn adaptive behaviours.Nicolas VecovenDamien ErnstAntoine WehenkelGuillaume DrionAnimals excel at adapting their intentions, attention, and actions to the environment, making them remarkably efficient at interacting with a rich, unpredictable and ever-changing external world, a property that intelligent machines currently lack. Such an adaptation property relies heavily on cellular neuromodulation, the biological mechanism that dynamically controls intrinsic properties of neurons and their response to external stimuli in a context-dependent manner. In this paper, we take inspiration from cellular neuromodulation to construct a new deep neural network architecture that is specifically designed to learn adaptive behaviours. The network adaptation capabilities are tested on navigation benchmarks in a meta-reinforcement learning context and compared with state-of-the-art approaches. Results show that neuromodulation is capable of adapting an agent to different tasks and that neuromodulation-based approaches provide a promising way of improving adaptation of artificial systems.https://storage.googleapis.com/plos-corpus-prod/10.1371/journal.pone.0227922/1/pone.0227922.pdf?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=wombat-sa%40plos-prod.iam.gserviceaccount.com%2F20210219%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20210219T120936Z&X-Goog-Expires=3600&X-Goog-SignedHeaders=host&X-Goog-Signature=af05e7a09ac436a7f2a0d512caf0b0b754a47b2d7d6354bf119bc68c7c9651a3af7a3b98e5c821017e79f4ac5aca38af7eee80c061e8334773ff53947ed2559e53c40c87ac574623ea32479f510ce397e30c285f6f15479a18671d7498b3ab6d7a2ae64d2ff3220dcccbad2d02741c1f1832af675898af233059acf487428367808d27f212ff5856b4b6a309c977af82b50963db8c672c3136e633f1eb5d1f2e7a96b711e8ba0ed61e9441b7cfbe1e5979b1e31f3daa05c0c1d476496e55a5695f6d998db181bd3cd35013a4083555751fe8f7c5f4d102f9d3466e35ad1d44d1a133342435534bdfffd967a000f7a4b925b69356706ba481a5d65191c9cd3326
spellingShingle Nicolas Vecoven
Damien Ernst
Antoine Wehenkel
Guillaume Drion
Introducing neuromodulation in deep neural networks to learn adaptive behaviours.
PLoS ONE
title Introducing neuromodulation in deep neural networks to learn adaptive behaviours.
title_full Introducing neuromodulation in deep neural networks to learn adaptive behaviours.
title_fullStr Introducing neuromodulation in deep neural networks to learn adaptive behaviours.
title_full_unstemmed Introducing neuromodulation in deep neural networks to learn adaptive behaviours.
title_short Introducing neuromodulation in deep neural networks to learn adaptive behaviours.
title_sort introducing neuromodulation in deep neural networks to learn adaptive behaviours
url https://storage.googleapis.com/plos-corpus-prod/10.1371/journal.pone.0227922/1/pone.0227922.pdf?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=wombat-sa%40plos-prod.iam.gserviceaccount.com%2F20210219%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20210219T120936Z&X-Goog-Expires=3600&X-Goog-SignedHeaders=host&X-Goog-Signature=af05e7a09ac436a7f2a0d512caf0b0b754a47b2d7d6354bf119bc68c7c9651a3af7a3b98e5c821017e79f4ac5aca38af7eee80c061e8334773ff53947ed2559e53c40c87ac574623ea32479f510ce397e30c285f6f15479a18671d7498b3ab6d7a2ae64d2ff3220dcccbad2d02741c1f1832af675898af233059acf487428367808d27f212ff5856b4b6a309c977af82b50963db8c672c3136e633f1eb5d1f2e7a96b711e8ba0ed61e9441b7cfbe1e5979b1e31f3daa05c0c1d476496e55a5695f6d998db181bd3cd35013a4083555751fe8f7c5f4d102f9d3466e35ad1d44d1a133342435534bdfffd967a000f7a4b925b69356706ba481a5d65191c9cd3326
work_keys_str_mv AT nicolasvecoven introducingneuromodulationindeepneuralnetworkstolearnadaptivebehaviours
AT damienernst introducingneuromodulationindeepneuralnetworkstolearnadaptivebehaviours
AT antoinewehenkel introducingneuromodulationindeepneuralnetworkstolearnadaptivebehaviours
AT guillaumedrion introducingneuromodulationindeepneuralnetworkstolearnadaptivebehaviours