Introducing neuromodulation in deep neural networks to learn adaptive behaviours.

Animals excel at adapting their intentions, attention, and actions to the environment, making them remarkably efficient at interacting with a rich, unpredictable and ever-changing external world, a property that intelligent machines currently lack. Such an adaptation property relies heavily on cellu...

Full description

Saved in:
Bibliographic Details
Main Authors: Nicolas Vecoven, Damien Ernst, Antoine Wehenkel, Guillaume Drion
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://storage.googleapis.com/plos-corpus-prod/10.1371/journal.pone.0227922/1/pone.0227922.pdf?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=wombat-sa%40plos-prod.iam.gserviceaccount.com%2F20210219%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20210219T120936Z&X-Goog-Expires=3600&X-Goog-SignedHeaders=host&X-Goog-Signature=af05e7a09ac436a7f2a0d512caf0b0b754a47b2d7d6354bf119bc68c7c9651a3af7a3b98e5c821017e79f4ac5aca38af7eee80c061e8334773ff53947ed2559e53c40c87ac574623ea32479f510ce397e30c285f6f15479a18671d7498b3ab6d7a2ae64d2ff3220dcccbad2d02741c1f1832af675898af233059acf487428367808d27f212ff5856b4b6a309c977af82b50963db8c672c3136e633f1eb5d1f2e7a96b711e8ba0ed61e9441b7cfbe1e5979b1e31f3daa05c0c1d476496e55a5695f6d998db181bd3cd35013a4083555751fe8f7c5f4d102f9d3466e35ad1d44d1a133342435534bdfffd967a000f7a4b925b69356706ba481a5d65191c9cd3326
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Animals excel at adapting their intentions, attention, and actions to the environment, making them remarkably efficient at interacting with a rich, unpredictable and ever-changing external world, a property that intelligent machines currently lack. Such an adaptation property relies heavily on cellular neuromodulation, the biological mechanism that dynamically controls intrinsic properties of neurons and their response to external stimuli in a context-dependent manner. In this paper, we take inspiration from cellular neuromodulation to construct a new deep neural network architecture that is specifically designed to learn adaptive behaviours. The network adaptation capabilities are tested on navigation benchmarks in a meta-reinforcement learning context and compared with state-of-the-art approaches. Results show that neuromodulation is capable of adapting an agent to different tasks and that neuromodulation-based approaches provide a promising way of improving adaptation of artificial systems.
ISSN:1932-6203