Existence of Optimal Control for a Nonlinear-Viscous Fluid Model

We consider the optimal control problem for a mathematical model describing steady flows of a nonlinear-viscous incompressible fluid in a bounded three-dimensional (or a two-dimensional) domain with impermeable solid walls. The control parameter is the surface force at a given part of the flow domai...

Full description

Saved in:
Bibliographic Details
Main Authors: Evgenii S. Baranovskii, Mikhail A. Artemov
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:International Journal of Differential Equations
Online Access:http://dx.doi.org/10.1155/2016/9428128
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832555816047083520
author Evgenii S. Baranovskii
Mikhail A. Artemov
author_facet Evgenii S. Baranovskii
Mikhail A. Artemov
author_sort Evgenii S. Baranovskii
collection DOAJ
description We consider the optimal control problem for a mathematical model describing steady flows of a nonlinear-viscous incompressible fluid in a bounded three-dimensional (or a two-dimensional) domain with impermeable solid walls. The control parameter is the surface force at a given part of the flow domain boundary. For a given bounded set of admissible controls, we construct generalized (weak) solutions that minimize a given cost functional.
format Article
id doaj-art-e1e11925d6774e8686b5c5cf0e8b6cbb
institution Kabale University
issn 1687-9643
1687-9651
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series International Journal of Differential Equations
spelling doaj-art-e1e11925d6774e8686b5c5cf0e8b6cbb2025-02-03T05:47:16ZengWileyInternational Journal of Differential Equations1687-96431687-96512016-01-01201610.1155/2016/94281289428128Existence of Optimal Control for a Nonlinear-Viscous Fluid ModelEvgenii S. Baranovskii0Mikhail A. Artemov1Department of Applied Mathematics, Informatics and Mechanics, Voronezh State University, Universitetskaya Ploshchad 1, Voronezh 394006, RussiaDepartment of Applied Mathematics, Informatics and Mechanics, Voronezh State University, Universitetskaya Ploshchad 1, Voronezh 394006, RussiaWe consider the optimal control problem for a mathematical model describing steady flows of a nonlinear-viscous incompressible fluid in a bounded three-dimensional (or a two-dimensional) domain with impermeable solid walls. The control parameter is the surface force at a given part of the flow domain boundary. For a given bounded set of admissible controls, we construct generalized (weak) solutions that minimize a given cost functional.http://dx.doi.org/10.1155/2016/9428128
spellingShingle Evgenii S. Baranovskii
Mikhail A. Artemov
Existence of Optimal Control for a Nonlinear-Viscous Fluid Model
International Journal of Differential Equations
title Existence of Optimal Control for a Nonlinear-Viscous Fluid Model
title_full Existence of Optimal Control for a Nonlinear-Viscous Fluid Model
title_fullStr Existence of Optimal Control for a Nonlinear-Viscous Fluid Model
title_full_unstemmed Existence of Optimal Control for a Nonlinear-Viscous Fluid Model
title_short Existence of Optimal Control for a Nonlinear-Viscous Fluid Model
title_sort existence of optimal control for a nonlinear viscous fluid model
url http://dx.doi.org/10.1155/2016/9428128
work_keys_str_mv AT evgeniisbaranovskii existenceofoptimalcontrolforanonlinearviscousfluidmodel
AT mikhailaartemov existenceofoptimalcontrolforanonlinearviscousfluidmodel