The Cardinal Spline Methods for the Numerical Solution of Nonlinear Integral Equations
In this study, an effective technique is presented for solving nonlinear Volterra integral equations. The method is based on application of cardinal spline functions on small compact supports. The integral equation is reduced to a system of algebra equations. Since the matrix for the system is trian...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Chemistry |
Online Access: | http://dx.doi.org/10.1155/2020/3236813 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, an effective technique is presented for solving nonlinear Volterra integral equations. The method is based on application of cardinal spline functions on small compact supports. The integral equation is reduced to a system of algebra equations. Since the matrix for the system is triangular, it is relatively straightforward to solve for the unknowns and an approximation of the original solution with high accuracy is accomplished. Several cardinal splines are employed in the paper to enhance the accuracy. The sufficient condition for the existence of the inverse matrix is examined, and the convergence rate is analyzed. We compare our method with other methods proposed in recent papers and demonstrated the advantage of our method with several examples. |
---|---|
ISSN: | 2090-9063 2090-9071 |