Synthesis of Biomaterial-Based Hydrogels Reinforced with Cellulose Nanocrystals for Biomedical Applications

Cellulose nanocrystals (CNC) were prepared by formic acid hydrolysis and TEMPO- (2,2,6,6-tetramethyl-piperidine-1-oxyl-) mediated oxidation. The prepared CNCs were reinforced into biopolymers chitosan (CHI), alginate (ALG), and gelatin (GEL) to obtain “CNC-ALG-GEL” and “CNC-CHI-GEL” hydrogels. The s...

Full description

Saved in:
Bibliographic Details
Main Authors: Pavan Kumar Dara, Mahadevan Raghavankutty, Karthik Deekonda, Anil Kumar Vemu, Visnuvinayagam Sivam, Suseela Mathew, Anandan Rangasamy, Ravishankar Chandragiri Nagarajarao, Senthilkumar Subramanian
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2021/4865733
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cellulose nanocrystals (CNC) were prepared by formic acid hydrolysis and TEMPO- (2,2,6,6-tetramethyl-piperidine-1-oxyl-) mediated oxidation. The prepared CNCs were reinforced into biopolymers chitosan (CHI), alginate (ALG), and gelatin (GEL) to obtain “CNC-ALG-GEL” and “CNC-CHI-GEL” hydrogels. The synthesized hydrogels were characterized for physicochemical, thermal, and structural characterization using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal gravity analysis (TGA), and X-ray diffraction (XRD) analyses. Notably, the reinforcement of CNC has not altered the molecular structure of a biopolymer as revealed by FT-IR analysis. The hydrogels reinforced with CNC have shown better thermal stability and miscibility as revealed by thermal gravity analysis. The physicochemical, thermal, and structural characterization revealed the chemical interaction and electrostatic attraction between the CNC and biopolymers. The biocompatibility was investigated by evaluating the viability of the L929 fibroblast cell, which represents good biocompatibility and nontoxic nature. These hydrogels could be implemented in therapeutic biomedical research and regenerative medicinal applications.
ISSN:1687-9422
1687-9430