Highly-Sensitive Integrating Optical Receiver With Large PIN Photodiode

This paper presents a highly-sensitive monolithic optoelectronic receiver in <inline-formula><tex-math notation="LaTeX">$\mathbf{180\, {nm}}$</tex-math></inline-formula> CMOS. An integrating front-end with noise matching via an negative Miller capacitance is propose...

Full description

Saved in:
Bibliographic Details
Main Authors: Simon Michael Laube, Christoph Gasser, Kerstin Schneider-Hornstein, Horst Zimmermann
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10737098/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a highly-sensitive monolithic optoelectronic receiver in <inline-formula><tex-math notation="LaTeX">$\mathbf{180\, {nm}}$</tex-math></inline-formula> CMOS. An integrating front-end with noise matching via an negative Miller capacitance is proposed, to reduce the power penalty imposed by large PIN photodiodes (PDs). Three new multi-dot PIN PDs are integrated with the front-end. At a wavelength of <inline-formula><tex-math notation="LaTeX">$\mathbf{642\, {nm}}$</tex-math></inline-formula> and reverse bias of <inline-formula><tex-math notation="LaTeX">$\mathbf {8}\,\mathbf {V}$</tex-math></inline-formula>, their responsivity (capacitance) is <inline-formula><tex-math notation="LaTeX">$\mathbf {0.38\, {A/W}}$</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">$\mathbf{29\, {fF}}$</tex-math></inline-formula>), <inline-formula><tex-math notation="LaTeX">$\mathbf {0.36\, {A/W}}$</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">$\mathbf{33\, {fF}}$</tex-math></inline-formula>), and <inline-formula><tex-math notation="LaTeX">$\mathbf {0.43\, {A/W}}$</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">$\mathbf{123\, {fF}}$</tex-math></inline-formula>), respectively. Compared to our previous integrating PIN receivers, the light-sensitive area is up to 30 times larger. At a supply voltage of <inline-formula><tex-math notation="LaTeX">$\mathbf {1.8\, {V}}$</tex-math></inline-formula>, wavelength of <inline-formula><tex-math notation="LaTeX">$\mathbf{642\, {nm}}$</tex-math></inline-formula>, bit rate of <inline-formula><tex-math notation="LaTeX">$\mathbf {20\, {Mbit/s}}$</tex-math></inline-formula>, and reference <inline-formula><tex-math notation="LaTeX">${\mathbf{BER}=2\cdot 10^{-3}}$</tex-math></inline-formula>, the prototype receiver achieves a sensitivity of <inline-formula><tex-math notation="LaTeX">$\mathbf {-55.4\, {dBm}}$</tex-math></inline-formula> for the first PD, <inline-formula><tex-math notation="LaTeX">$\mathbf {-56.5\, {dBm}}$</tex-math></inline-formula> for the second PD, and <inline-formula><tex-math notation="LaTeX">$\mathbf {-53.4\, {dBm}}$</tex-math></inline-formula> for the third PD. The best sensitivity equals a distance of only <inline-formula><tex-math notation="LaTeX">$\mathbf {21.2\, {dB}}$</tex-math></inline-formula> to the quantum limit.
ISSN:1943-0655