A New Multiple-Distribution GAN Model to Solve Complexity in End-to-End Chromosome Karyotyping

With significant development of Internet of medical things (IoMT) and cloud-fog-edge computing, medical industry is now involving medical big data to improve quality of service in patient care. Karyotyping refers classifying human chromosomes. However, performing karyotyping task generally requires...

Full description

Saved in:
Bibliographic Details
Main Authors: Yirui Wu, Xiao Tan, Tong Lu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/8923838
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With significant development of Internet of medical things (IoMT) and cloud-fog-edge computing, medical industry is now involving medical big data to improve quality of service in patient care. Karyotyping refers classifying human chromosomes. However, performing karyotyping task generally requires domain expertise in cytogenetics, long-period experience for high accuracy, and considerable manual efforts. An end-to-end chromosome karyotype analysis system is proposed over medical big data to automatically and accurately perform chromosome related tasks of detection, segmentation, and classification. Facing image data generated and collected by means of edge computing, we firstly utilize visual feature to generate chromosome candidates with Extremal Regions (ER) technology. Due to severe occlusion and cross overlapping, we utilize ring radius transform to cluster pixels with same property to approximate chromosome shapes. To solve the problem of unbalanced and small dataset by covering diverse data patterns, we proposed multidistributed generated advertising network (MD-GAN) to perform data enhancement by generating additional training samples. Afterwards, we fine-tune CNN for chromosome classification task by involving generated and sufficient training images. Through experiments in self-collected datasets, the proposed method achieves high accuracy in tasks of chromosome detection, segmentation, and classification. Moreover, experimental results prove that MD-GAN-based data enhancement contributes to classification results of CNN to a certain extent.
ISSN:1076-2787
1099-0526