Bi-Univalent Function Classes Defined by Using a Second Einstein Function
Motivated by q-calculus, subordination principle, and the second Einstein function, we define two families of bi-univalent analytic functions on the open unit disc of the complex plane. We deduce estimates for the first two Maclaurin’s coefficients and the Fekete-Sezgö functional inequalities for th...
Saved in:
Main Authors: | Alaa H. El-Qadeem, Saleh A. Saleh, Mohamed A. Mamon |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2022/6933153 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Initial Bounds for Certain Classes of Bi-Univalent Functions Defined by Horadam Polynomials
by: Chinnaswamy Abirami, et al.
Published: (2020-01-01) -
Coefficient Estimates for Certain Classes of Bi-Univalent Functions
by: Jay M. Jahangiri, et al.
Published: (2013-01-01) -
On a class of univalent functions
by: Vikramaditya Singh
Published: (2000-01-01) -
Coefficient Estimates for New Subclasses of Analytic and Bi-Univalent Functions Defined by Al-Oboudi Differential Operator
by: Serap Bulut
Published: (2013-01-01) -
Generalizing Certain Analytic Functions Correlative to the n-th Coefficient of Certain Class of Bi-Univalent Functions
by: Hameed Ur Rehman, et al.
Published: (2021-01-01)