The Laguerre Constellation of Classical Orthogonal Polynomials

A linear functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">u</mi></semantics></math></inline-formula> is classical if there exist polynomials <...

Full description

Saved in:
Bibliographic Details
Main Author: Roberto S. Costas-Santos
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/277
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588096377454592
author Roberto S. Costas-Santos
author_facet Roberto S. Costas-Santos
author_sort Roberto S. Costas-Santos
collection DOAJ
description A linear functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">u</mi></semantics></math></inline-formula> is classical if there exist polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ϕ</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ψ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">D</mi><mfenced separators="" open="(" close=")"><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi mathvariant="bold">u</mi></mfenced><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi mathvariant="bold">u</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> is a certain differential, or difference, operator. The polynomials orthogonal with respect to the linear functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">u</mi></semantics></math></inline-formula> are called classical orthogonal polynomials. In the theory of orthogonal polynomials, a correct characterization of the classical families is of great interest. In this work, on the one hand, we present the Laguerre constellation, which is formed by all the classical families for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ϕ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, obtaining for all of them new algebraic identities such as structure formulas and orthogonality properties, as well as new Rodrigues formulas; on the other hand, we present a theorem that characterizes the classical families belonging to the Laguerre constellation.
format Article
id doaj-art-e0f7c32f2ce54a5aa2fefd79e1f2311b
institution Kabale University
issn 2227-7390
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-e0f7c32f2ce54a5aa2fefd79e1f2311b2025-01-24T13:40:00ZengMDPI AGMathematics2227-73902025-01-0113227710.3390/math13020277The Laguerre Constellation of Classical Orthogonal PolynomialsRoberto S. Costas-Santos0Department of Quantitative Methods, Universidad Loyola Andalucía, 41704 Sevilla, SpainA linear functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">u</mi></semantics></math></inline-formula> is classical if there exist polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ϕ</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ψ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">D</mi><mfenced separators="" open="(" close=")"><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi mathvariant="bold">u</mi></mfenced><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi mathvariant="bold">u</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> is a certain differential, or difference, operator. The polynomials orthogonal with respect to the linear functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">u</mi></semantics></math></inline-formula> are called classical orthogonal polynomials. In the theory of orthogonal polynomials, a correct characterization of the classical families is of great interest. In this work, on the one hand, we present the Laguerre constellation, which is formed by all the classical families for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ϕ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, obtaining for all of them new algebraic identities such as structure formulas and orthogonality properties, as well as new Rodrigues formulas; on the other hand, we present a theorem that characterizes the classical families belonging to the Laguerre constellation.https://www.mdpi.com/2227-7390/13/2/277recurrence relationcharacterization theoremclassical orthogonal polynomialsLaguerre constellation
spellingShingle Roberto S. Costas-Santos
The Laguerre Constellation of Classical Orthogonal Polynomials
Mathematics
recurrence relation
characterization theorem
classical orthogonal polynomials
Laguerre constellation
title The Laguerre Constellation of Classical Orthogonal Polynomials
title_full The Laguerre Constellation of Classical Orthogonal Polynomials
title_fullStr The Laguerre Constellation of Classical Orthogonal Polynomials
title_full_unstemmed The Laguerre Constellation of Classical Orthogonal Polynomials
title_short The Laguerre Constellation of Classical Orthogonal Polynomials
title_sort laguerre constellation of classical orthogonal polynomials
topic recurrence relation
characterization theorem
classical orthogonal polynomials
Laguerre constellation
url https://www.mdpi.com/2227-7390/13/2/277
work_keys_str_mv AT robertoscostassantos thelaguerreconstellationofclassicalorthogonalpolynomials
AT robertoscostassantos laguerreconstellationofclassicalorthogonalpolynomials