The Laguerre Constellation of Classical Orthogonal Polynomials

A linear functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">u</mi></semantics></math></inline-formula> is classical if there exist polynomials <...

Full description

Saved in:
Bibliographic Details
Main Author: Roberto S. Costas-Santos
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/277
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A linear functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">u</mi></semantics></math></inline-formula> is classical if there exist polynomials <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϕ</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ψ</mi></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ϕ</mi><mo>≤</mo><mn>2</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ψ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">D</mi><mfenced separators="" open="(" close=")"><mi>ϕ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi mathvariant="bold">u</mi></mfenced><mo>=</mo><mi>ψ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mi mathvariant="bold">u</mi></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">D</mi></semantics></math></inline-formula> is a certain differential, or difference, operator. The polynomials orthogonal with respect to the linear functional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold">u</mi></semantics></math></inline-formula> are called classical orthogonal polynomials. In the theory of orthogonal polynomials, a correct characterization of the classical families is of great interest. In this work, on the one hand, we present the Laguerre constellation, which is formed by all the classical families for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo form="prefix">deg</mo><mi>ϕ</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, obtaining for all of them new algebraic identities such as structure formulas and orthogonality properties, as well as new Rodrigues formulas; on the other hand, we present a theorem that characterizes the classical families belonging to the Laguerre constellation.
ISSN:2227-7390