A Test Matrix for an Inverse Eigenvalue Problem

We present a real symmetric tridiagonal matrix of order n whose eigenvalues are {2k}k=0n-1 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l+1}l=0n-2. The matrix entries are explicit functions of the size n, and so the matrix...

Full description

Saved in:
Bibliographic Details
Main Authors: G. M. L. Gladwell, T. H. Jones, N. B. Willms
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/515082
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562774803218432
author G. M. L. Gladwell
T. H. Jones
N. B. Willms
author_facet G. M. L. Gladwell
T. H. Jones
N. B. Willms
author_sort G. M. L. Gladwell
collection DOAJ
description We present a real symmetric tridiagonal matrix of order n whose eigenvalues are {2k}k=0n-1 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l+1}l=0n-2. The matrix entries are explicit functions of the size n, and so the matrix can be used as a test matrix for eigenproblems, both forward and inverse. An explicit solution of a spring-mass inverse problem incorporating the test matrix is provided.
format Article
id doaj-art-e0dc44a5ee8d4798a35ff7f86dce13fb
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-e0dc44a5ee8d4798a35ff7f86dce13fb2025-02-03T01:21:53ZengWileyJournal of Applied Mathematics1110-757X1687-00422014-01-01201410.1155/2014/515082515082A Test Matrix for an Inverse Eigenvalue ProblemG. M. L. Gladwell0T. H. Jones1N. B. Willms2Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, CanadaDepartment of Mathematics, Bishop’s University, Sherbrooke, QC, J1M 2H2, CanadaDepartment of Mathematics, Bishop’s University, Sherbrooke, QC, J1M 2H2, CanadaWe present a real symmetric tridiagonal matrix of order n whose eigenvalues are {2k}k=0n-1 which also satisfies the additional condition that its leading principle submatrix has a uniformly interlaced spectrum, {2l+1}l=0n-2. The matrix entries are explicit functions of the size n, and so the matrix can be used as a test matrix for eigenproblems, both forward and inverse. An explicit solution of a spring-mass inverse problem incorporating the test matrix is provided.http://dx.doi.org/10.1155/2014/515082
spellingShingle G. M. L. Gladwell
T. H. Jones
N. B. Willms
A Test Matrix for an Inverse Eigenvalue Problem
Journal of Applied Mathematics
title A Test Matrix for an Inverse Eigenvalue Problem
title_full A Test Matrix for an Inverse Eigenvalue Problem
title_fullStr A Test Matrix for an Inverse Eigenvalue Problem
title_full_unstemmed A Test Matrix for an Inverse Eigenvalue Problem
title_short A Test Matrix for an Inverse Eigenvalue Problem
title_sort test matrix for an inverse eigenvalue problem
url http://dx.doi.org/10.1155/2014/515082
work_keys_str_mv AT gmlgladwell atestmatrixforaninverseeigenvalueproblem
AT thjones atestmatrixforaninverseeigenvalueproblem
AT nbwillms atestmatrixforaninverseeigenvalueproblem
AT gmlgladwell testmatrixforaninverseeigenvalueproblem
AT thjones testmatrixforaninverseeigenvalueproblem
AT nbwillms testmatrixforaninverseeigenvalueproblem