Novel high-performance 2–1–2 composites with two ferroelectric components causing a variable anisotropy of figures of merit

A high performance of novel three-component composites with 2–1–2 connectivity is reported and discussed. Layers of the composites are parallel-connected, and each layer contains the ferroelectric (FE) component. The layer of the first type (LFT) represents domain-engineered single crystal poled alo...

Full description

Saved in:
Bibliographic Details
Main Authors: Vitaly Yu. Topolov, Sofya A. Kovrigina
Format: Article
Language:English
Published: World Scientific Publishing 2024-12-01
Series:Journal of Advanced Dielectrics
Subjects:
Online Access:https://www.worldscientific.com/doi/10.1142/S2010135X24500012
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high performance of novel three-component composites with 2–1–2 connectivity is reported and discussed. Layers of the composites are parallel-connected, and each layer contains the ferroelectric (FE) component. The layer of the first type (LFT) represents domain-engineered single crystal poled along either [0 0 1] or [0 1 1]. The layer of the second type is described as a system of long FE ceramic rods that have the shape of an elliptic cylinder and are aligned in a polymer medium. Piezoelectric coefficients [Formula: see text] and [Formula: see text] and sets of figures of merit (FOM) (energy-harvesting [Formula: see text], modified [Formula: see text] for a stress-driven harvester and modified [Formula: see text] for a strain-driven harvester) are analyzed to show their large values and specifics of the anisotropy when varying volume fractions of components and a rotation angle of the ceramic rod bases. For the first time, the studied parameters are compared in two directions: (i) the composite based on [0 0 1]-poled single crystal versus the composite based on [0 1 1]-poled single crystal and (ii) the lead-free composite versus the lead-containing composite (both based on [0 0 1]-poled single crystals). The advantages of the high-performance lead-free composite are discussed. The 2–1–2 composites put forward in this paper are of interest as advanced materials suitable for piezoelectric sensors, actuators and energy-harvesting systems operating at constant stress or strain.
ISSN:2010-135X
2010-1368