Generalized equivalence of matrices over Prüfer domains

Two m×n matrices A,B over a commutative ring R are equivalent in case there are invertible matrices P, Q over R with B=PAQ. While any m×n matrix over a principle ideal domain can be diagonalized, the same is not true for Dedekind domains. The first author and T. J. Ford introduced a coarser equivale...

Full description

Saved in:
Bibliographic Details
Main Authors: Frank DeMeyer, Hainya Kakakhail
Format: Article
Language:English
Published: Wiley 1991-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171291000881
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two m×n matrices A,B over a commutative ring R are equivalent in case there are invertible matrices P, Q over R with B=PAQ. While any m×n matrix over a principle ideal domain can be diagonalized, the same is not true for Dedekind domains. The first author and T. J. Ford introduced a coarser equivalence relation on matrices called homotopy and showed any m×n matrix over a Dedekind domain is homotopic to a direct sum of 1×2 matrices. In this article give, necessary and sufficient conditions on a Prüfer domain that any m×n matrix be homotopic to a direct sum of 1×2 matrices.
ISSN:0161-1712
1687-0425