Comparison of Three Statistical Downscaling Methods and Ensemble Downscaling Method Based on Bayesian Model Averaging in Upper Hanjiang River Basin, China

Many downscaling techniques have been developed in the past few years for projection of station-scale hydrological variables from large-scale atmospheric variables to assess the hydrological impacts of climate change. To improve the simulation accuracy of downscaling methods, the Bayesian Model Aver...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiaming Liu, Di Yuan, Liping Zhang, Xia Zou, Xingyuan Song
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2016/7463963
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many downscaling techniques have been developed in the past few years for projection of station-scale hydrological variables from large-scale atmospheric variables to assess the hydrological impacts of climate change. To improve the simulation accuracy of downscaling methods, the Bayesian Model Averaging (BMA) method combined with three statistical downscaling methods, which are support vector machine (SVM), BCC/RCG-Weather Generators (BCC/RCG-WG), and Statistics Downscaling Model (SDSM), is proposed in this study, based on the statistical relationship between the larger scale climate predictors and observed precipitation in upper Hanjiang River Basin (HRB). The statistical analysis of three performance criteria (the Nash-Sutcliffe coefficient of efficiency, the coefficient of correlation, and the relative error) shows that the performance of ensemble downscaling method based on BMA for rainfall is better than that of each single statistical downscaling method. Moreover, the performance for the runoff modelled by the SWAT rainfall-runoff model using the downscaled daily rainfall by four methods is also compared, and the ensemble downscaling method has better simulation accuracy. The ensemble downscaling technology based on BMA can provide scientific basis for the study of runoff response to climate change.
ISSN:1687-9309
1687-9317