Uncertainty quantification from ensemble variance scaling laws in deep neural networks

Quantifying the uncertainty from machine learning analyses is critical to their use in the physical sciences. In this work we focus on uncertainty inherited from the initialization distribution of neural networks. We compute the mean $\mu_{\mathcal{L}}$ and variance $\sigma_{\mathcal{L}}^2$ of the t...

Full description

Saved in:
Bibliographic Details
Main Authors: Ibrahim Elsharkawy, Benjamin Hooberman, Yonatan Kahn
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:Machine Learning: Science and Technology
Subjects:
Online Access:https://doi.org/10.1088/2632-2153/adf7fe
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quantifying the uncertainty from machine learning analyses is critical to their use in the physical sciences. In this work we focus on uncertainty inherited from the initialization distribution of neural networks. We compute the mean $\mu_{\mathcal{L}}$ and variance $\sigma_{\mathcal{L}}^2$ of the test loss $\mathcal{L}$ for an ensemble of multi-layer perceptrons with neural tangent kernel initialization in the infinite-width limit, and compare empirically to the results from finite-width networks for three example tasks: MNIST classification, CIFAR classification and calorimeter energy regression. We observe scaling laws as a function of training set size $N_\mathcal{D}$ for both $\mu_{\mathcal{L}}$ and $\sigma_{\mathcal{L}}$ , but find that the coefficient of variation $\epsilon_{\mathcal{L}} \equiv \sigma_{\mathcal{L}}/\mu_{\mathcal{L}}$ becomes independent of $N_\mathcal{D}$ at both infinite and finite width for sufficiently large $N_\mathcal{D}$ . This implies that the coefficient of variation of a finite-width network may be approximated by its infinite-width value, and may in principle be calculable using finite-width perturbation theory.
ISSN:2632-2153