Skein modules of links in cylinders over surfaces

We define the Conway skein module 𝒞 (M) of ordered based links in a 3-manifold M. This module gives rise to 𝒞 (M)-valued invariants of usual links in M. We determine a basis of the ℤ[z]-module 𝒞 (Σ×[0,1])/Tor (𝒞 (Σ×[0,1])), where Σ is the real projective plane or a surface with boundary. For cylinde...

Full description

Saved in:
Bibliographic Details
Main Author: Jens Lieberum
Format: Article
Language:English
Published: Wiley 2002-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S016117120201181X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545818431717376
author Jens Lieberum
author_facet Jens Lieberum
author_sort Jens Lieberum
collection DOAJ
description We define the Conway skein module 𝒞 (M) of ordered based links in a 3-manifold M. This module gives rise to 𝒞 (M)-valued invariants of usual links in M. We determine a basis of the ℤ[z]-module 𝒞 (Σ×[0,1])/Tor (𝒞 (Σ×[0,1])), where Σ is the real projective plane or a surface with boundary. For cylinders over the Möbius strip or the projective plane, we derive special properties of the Conway skein module, among them a refinement of a theorem of Hartley and Kawauchi about the Conway polynomial of strongly positive amphicheiral knots in S3. In addition, we determine the Homfly and Kauffman skein modules of Σ×[0,1] where Σ is an oriented surface with boundary.
format Article
id doaj-art-dfdb703225204c11b64a35ef481da85b
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2002-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-dfdb703225204c11b64a35ef481da85b2025-02-03T07:24:42ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252002-01-0132951555410.1155/S016117120201181XSkein modules of links in cylinders over surfacesJens Lieberum0Mathematisches Institut, Universität Basel, Rheinsprung 21, Basel CH-4051, SwitzerlandWe define the Conway skein module 𝒞 (M) of ordered based links in a 3-manifold M. This module gives rise to 𝒞 (M)-valued invariants of usual links in M. We determine a basis of the ℤ[z]-module 𝒞 (Σ×[0,1])/Tor (𝒞 (Σ×[0,1])), where Σ is the real projective plane or a surface with boundary. For cylinders over the Möbius strip or the projective plane, we derive special properties of the Conway skein module, among them a refinement of a theorem of Hartley and Kawauchi about the Conway polynomial of strongly positive amphicheiral knots in S3. In addition, we determine the Homfly and Kauffman skein modules of Σ×[0,1] where Σ is an oriented surface with boundary.http://dx.doi.org/10.1155/S016117120201181X
spellingShingle Jens Lieberum
Skein modules of links in cylinders over surfaces
International Journal of Mathematics and Mathematical Sciences
title Skein modules of links in cylinders over surfaces
title_full Skein modules of links in cylinders over surfaces
title_fullStr Skein modules of links in cylinders over surfaces
title_full_unstemmed Skein modules of links in cylinders over surfaces
title_short Skein modules of links in cylinders over surfaces
title_sort skein modules of links in cylinders over surfaces
url http://dx.doi.org/10.1155/S016117120201181X
work_keys_str_mv AT jenslieberum skeinmodulesoflinksincylindersoversurfaces