Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2
The automorphism group U6(2):2 of the unitary group U6(2)≅Fi21 has a maximal subgroup G¯ of the form (29:(L3(4)):2 of order 20643840. In this paper, Fischer-Clifford theory is applied to the split extension group G¯ to construct its character table. Also, class fusion from G¯ into the parent group U...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2019/9382525 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832553431829577728 |
---|---|
author | Abraham Love Prins Ramotjaki Lucky Monaledi |
author_facet | Abraham Love Prins Ramotjaki Lucky Monaledi |
author_sort | Abraham Love Prins |
collection | DOAJ |
description | The automorphism group U6(2):2 of the unitary group U6(2)≅Fi21 has a maximal subgroup G¯ of the form (29:(L3(4)):2 of order 20643840. In this paper, Fischer-Clifford theory is applied to the split extension group G¯ to construct its character table. Also, class fusion from G¯ into the parent group U6(2):2 is determined. |
format | Article |
id | doaj-art-dfc9445e57724d478c4f1ec2237cb08d |
institution | Kabale University |
issn | 0161-1712 1687-0425 |
language | English |
publishDate | 2019-01-01 |
publisher | Wiley |
record_format | Article |
series | International Journal of Mathematics and Mathematical Sciences |
spelling | doaj-art-dfc9445e57724d478c4f1ec2237cb08d2025-02-03T05:54:07ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252019-01-01201910.1155/2019/93825259382525Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2Abraham Love Prins0Ramotjaki Lucky Monaledi1Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South AfricaDepartment of Mathematics, Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South AfricaThe automorphism group U6(2):2 of the unitary group U6(2)≅Fi21 has a maximal subgroup G¯ of the form (29:(L3(4)):2 of order 20643840. In this paper, Fischer-Clifford theory is applied to the split extension group G¯ to construct its character table. Also, class fusion from G¯ into the parent group U6(2):2 is determined.http://dx.doi.org/10.1155/2019/9382525 |
spellingShingle | Abraham Love Prins Ramotjaki Lucky Monaledi Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2 International Journal of Mathematics and Mathematical Sciences |
title | Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2 |
title_full | Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2 |
title_fullStr | Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2 |
title_full_unstemmed | Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2 |
title_short | Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2 |
title_sort | fischer clifford matrices and character table of the maximal subgroup 29 l3 4 2 of u6 2 2 |
url | http://dx.doi.org/10.1155/2019/9382525 |
work_keys_str_mv | AT abrahamloveprins fischercliffordmatricesandcharactertableofthemaximalsubgroup29l342ofu622 AT ramotjakiluckymonaledi fischercliffordmatricesandcharactertableofthemaximalsubgroup29l342ofu622 |