Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2

The automorphism group U6(2):2 of the unitary group U6(2)≅Fi21 has a maximal subgroup G¯ of the form (29:(L3(4)):2 of order 20643840. In this paper, Fischer-Clifford theory is applied to the split extension group G¯ to construct its character table. Also, class fusion from G¯ into the parent group U...

Full description

Saved in:
Bibliographic Details
Main Authors: Abraham Love Prins, Ramotjaki Lucky Monaledi
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2019/9382525
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553431829577728
author Abraham Love Prins
Ramotjaki Lucky Monaledi
author_facet Abraham Love Prins
Ramotjaki Lucky Monaledi
author_sort Abraham Love Prins
collection DOAJ
description The automorphism group U6(2):2 of the unitary group U6(2)≅Fi21 has a maximal subgroup G¯ of the form (29:(L3(4)):2 of order 20643840. In this paper, Fischer-Clifford theory is applied to the split extension group G¯ to construct its character table. Also, class fusion from G¯ into the parent group U6(2):2 is determined.
format Article
id doaj-art-dfc9445e57724d478c4f1ec2237cb08d
institution Kabale University
issn 0161-1712
1687-0425
language English
publishDate 2019-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-dfc9445e57724d478c4f1ec2237cb08d2025-02-03T05:54:07ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252019-01-01201910.1155/2019/93825259382525Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2Abraham Love Prins0Ramotjaki Lucky Monaledi1Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South AfricaDepartment of Mathematics, Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South AfricaThe automorphism group U6(2):2 of the unitary group U6(2)≅Fi21 has a maximal subgroup G¯ of the form (29:(L3(4)):2 of order 20643840. In this paper, Fischer-Clifford theory is applied to the split extension group G¯ to construct its character table. Also, class fusion from G¯ into the parent group U6(2):2 is determined.http://dx.doi.org/10.1155/2019/9382525
spellingShingle Abraham Love Prins
Ramotjaki Lucky Monaledi
Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2
International Journal of Mathematics and Mathematical Sciences
title Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2
title_full Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2
title_fullStr Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2
title_full_unstemmed Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2
title_short Fischer-Clifford Matrices and Character Table of the Maximal Subgroup (29:(L3(4)):2 of U6(2):2
title_sort fischer clifford matrices and character table of the maximal subgroup 29 l3 4 2 of u6 2 2
url http://dx.doi.org/10.1155/2019/9382525
work_keys_str_mv AT abrahamloveprins fischercliffordmatricesandcharactertableofthemaximalsubgroup29l342ofu622
AT ramotjakiluckymonaledi fischercliffordmatricesandcharactertableofthemaximalsubgroup29l342ofu622