Identities of Symmetry for Higher-Order Generalized q-Euler Polynomials

We investigate the properties of symmetry in two variables related to multiple Euler q-l-function which interpolates higher-order q-Euler polynomials at negative integers. From our investigation, we can derive many interesting identities of symmetry in two variables related to generalized higher-ord...

Full description

Saved in:
Bibliographic Details
Main Authors: D. V. Dolgy, D. S. Kim, T. G. Kim, J. J. Seo
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/286239
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832545547786911744
author D. V. Dolgy
D. S. Kim
T. G. Kim
J. J. Seo
author_facet D. V. Dolgy
D. S. Kim
T. G. Kim
J. J. Seo
author_sort D. V. Dolgy
collection DOAJ
description We investigate the properties of symmetry in two variables related to multiple Euler q-l-function which interpolates higher-order q-Euler polynomials at negative integers. From our investigation, we can derive many interesting identities of symmetry in two variables related to generalized higher-order q-Euler polynomials and alternating generalized q-power sums.
format Article
id doaj-art-dfc3d2a59b784c6a9b525dfada6cd93b
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2014-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-dfc3d2a59b784c6a9b525dfada6cd93b2025-02-03T07:25:29ZengWileyAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/286239286239Identities of Symmetry for Higher-Order Generalized q-Euler PolynomialsD. V. Dolgy0D. S. Kim1T. G. Kim2J. J. Seo3Institute of Mathematics and Computer Sciences, Far Eastern Federal University, Vladivostok 690060, RussiaDepartment of Mathematics, Sogang University, Seoul 121-742, Republic of KoreaJangjeon Research Institute for Mathematics and Physics, 252-5 Hapcheon-Dong, Hapcheon-Gun Kyungshang Nam-Do 678-800, Republic of KoreaDepartment of Applied Mathematics, Pukyong National University, Busan 608-737, Republic of KoreaWe investigate the properties of symmetry in two variables related to multiple Euler q-l-function which interpolates higher-order q-Euler polynomials at negative integers. From our investigation, we can derive many interesting identities of symmetry in two variables related to generalized higher-order q-Euler polynomials and alternating generalized q-power sums.http://dx.doi.org/10.1155/2014/286239
spellingShingle D. V. Dolgy
D. S. Kim
T. G. Kim
J. J. Seo
Identities of Symmetry for Higher-Order Generalized q-Euler Polynomials
Abstract and Applied Analysis
title Identities of Symmetry for Higher-Order Generalized q-Euler Polynomials
title_full Identities of Symmetry for Higher-Order Generalized q-Euler Polynomials
title_fullStr Identities of Symmetry for Higher-Order Generalized q-Euler Polynomials
title_full_unstemmed Identities of Symmetry for Higher-Order Generalized q-Euler Polynomials
title_short Identities of Symmetry for Higher-Order Generalized q-Euler Polynomials
title_sort identities of symmetry for higher order generalized q euler polynomials
url http://dx.doi.org/10.1155/2014/286239
work_keys_str_mv AT dvdolgy identitiesofsymmetryforhigherordergeneralizedqeulerpolynomials
AT dskim identitiesofsymmetryforhigherordergeneralizedqeulerpolynomials
AT tgkim identitiesofsymmetryforhigherordergeneralizedqeulerpolynomials
AT jjseo identitiesofsymmetryforhigherordergeneralizedqeulerpolynomials