Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning

Background: Rapid and accurate identification of bacteria is required in order to develop effective treatment strategies. Traditional culture-based methods are time-consuming, while MALDI-TOF MS is expensive. The Raman spectroscopy, due to its relatively cost-effectiveness, offers a promising altern...

Full description

Saved in:
Bibliographic Details
Main Authors: Yu-Tzu Lin, Hsiu-Hsien Lin, Chih-Hao Chen, Kun-Hao Tseng, Pang-Chien Hsu, Ya-Lun Wu, Wei-Cheng Chang, Nai-Shun Liao, Yi-Fan Chou, Chun-Yi Hsu, Yu-Hui Liao, Mao-Wang Ho, Shih-Sheng Chang, Po-Ren Hsueh, Der-Yang Cho
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Journal of Microbiology, Immunology and Infection
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1684118224002202
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832087846653001728
author Yu-Tzu Lin
Hsiu-Hsien Lin
Chih-Hao Chen
Kun-Hao Tseng
Pang-Chien Hsu
Ya-Lun Wu
Wei-Cheng Chang
Nai-Shun Liao
Yi-Fan Chou
Chun-Yi Hsu
Yu-Hui Liao
Mao-Wang Ho
Shih-Sheng Chang
Po-Ren Hsueh
Der-Yang Cho
author_facet Yu-Tzu Lin
Hsiu-Hsien Lin
Chih-Hao Chen
Kun-Hao Tseng
Pang-Chien Hsu
Ya-Lun Wu
Wei-Cheng Chang
Nai-Shun Liao
Yi-Fan Chou
Chun-Yi Hsu
Yu-Hui Liao
Mao-Wang Ho
Shih-Sheng Chang
Po-Ren Hsueh
Der-Yang Cho
author_sort Yu-Tzu Lin
collection DOAJ
description Background: Rapid and accurate identification of bacteria is required in order to develop effective treatment strategies. Traditional culture-based methods are time-consuming, while MALDI-TOF MS is expensive. The Raman spectroscopy, due to its relatively cost-effectiveness, offers a promising alternative for bacterial identification. However, its clinical utility still requires further validation. Methods: In this study, the artificial intelligent Raman detection and identification system (AIRDIS) was implemented to identify bacterial species, including Staphylococcus aureus (n = 1290), Enterococcus faecium (n = 1020), Klebsiella pneumoniae (n = 1366), Pseudomonas aeruginosa (n = 1067), and Acinetobacter baumannii (n = 811). Raman spectra were collected, preprocessed, and analyzed by machine learning (ML). Results: After training on 24,420 Raman spectra from 1221 isolates and testing on 4333 isolates, the AIRDIS demonstrated an area under the curve (AUC) of 0.99 for Gram classification, with accuracies of 97.64 % for Gram-positive bacteria and 98.86 % for Gram-negative bacteria. Spectral differences between Gram-positive and Gram-negative bacteria were linked to structural variations in their cell walls, such as peptidoglycan and lipopolysaccharides. At the species level, S. aureus, E. faecium, K. pneumoniae, P. aeruginosa, and A. baumannii were identified with high accuracy, ranging from 94.76 % to 96.88 %, with all species achieving an AUC of 0.99. Conclusions: Validation with a large number of clinical isolates demonstrated Raman spectroscopy combined with ML excels in identification of five bacterial species associated with multidrug resistance. This finding confirms the clinical utility of the system while laying a solid foundation for the future development of antimicrobial resistance prediction models.
format Article
id doaj-art-df7cdb2fd76f41afb68ca3444c7547fa
institution Kabale University
issn 1684-1182
language English
publishDate 2025-02-01
publisher Elsevier
record_format Article
series Journal of Microbiology, Immunology and Infection
spelling doaj-art-df7cdb2fd76f41afb68ca3444c7547fa2025-02-06T05:11:21ZengElsevierJournal of Microbiology, Immunology and Infection1684-11822025-02-015817785Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learningYu-Tzu Lin0Hsiu-Hsien Lin1Chih-Hao Chen2Kun-Hao Tseng3Pang-Chien Hsu4Ya-Lun Wu5Wei-Cheng Chang6Nai-Shun Liao7Yi-Fan Chou8Chun-Yi Hsu9Yu-Hui Liao10Mao-Wang Ho11Shih-Sheng Chang12Po-Ren Hsueh13Der-Yang Cho14Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, TaiwanDepartment of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, TaiwanDivision of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, TaiwanDepartment of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, TaiwanDepartment of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, TaiwanAI Innovation Center, China Medical University Hospital, Taichung City, TaiwanITRUST MedTech Inc., Hsinchu, TaiwanITRUST MedTech Inc., Hsinchu, TaiwanITRUST MedTech Inc., Hsinchu, TaiwanITRUST MedTech Inc., Hsinchu, TaiwanITRUST MedTech Inc., Hsinchu, TaiwanDivision of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, TaiwanAI Innovation Center, China Medical University Hospital, Taichung City, TaiwanDepartment of Laboratory Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Corresponding author. Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan.Department of Neurosurgery, China Medical University Hospital, Taichung, TaiwanBackground: Rapid and accurate identification of bacteria is required in order to develop effective treatment strategies. Traditional culture-based methods are time-consuming, while MALDI-TOF MS is expensive. The Raman spectroscopy, due to its relatively cost-effectiveness, offers a promising alternative for bacterial identification. However, its clinical utility still requires further validation. Methods: In this study, the artificial intelligent Raman detection and identification system (AIRDIS) was implemented to identify bacterial species, including Staphylococcus aureus (n = 1290), Enterococcus faecium (n = 1020), Klebsiella pneumoniae (n = 1366), Pseudomonas aeruginosa (n = 1067), and Acinetobacter baumannii (n = 811). Raman spectra were collected, preprocessed, and analyzed by machine learning (ML). Results: After training on 24,420 Raman spectra from 1221 isolates and testing on 4333 isolates, the AIRDIS demonstrated an area under the curve (AUC) of 0.99 for Gram classification, with accuracies of 97.64 % for Gram-positive bacteria and 98.86 % for Gram-negative bacteria. Spectral differences between Gram-positive and Gram-negative bacteria were linked to structural variations in their cell walls, such as peptidoglycan and lipopolysaccharides. At the species level, S. aureus, E. faecium, K. pneumoniae, P. aeruginosa, and A. baumannii were identified with high accuracy, ranging from 94.76 % to 96.88 %, with all species achieving an AUC of 0.99. Conclusions: Validation with a large number of clinical isolates demonstrated Raman spectroscopy combined with ML excels in identification of five bacterial species associated with multidrug resistance. This finding confirms the clinical utility of the system while laying a solid foundation for the future development of antimicrobial resistance prediction models.http://www.sciencedirect.com/science/article/pii/S1684118224002202Raman spectroscopyMALDI-TOF MSArtificial intelligenceMachine learningSpecies identification
spellingShingle Yu-Tzu Lin
Hsiu-Hsien Lin
Chih-Hao Chen
Kun-Hao Tseng
Pang-Chien Hsu
Ya-Lun Wu
Wei-Cheng Chang
Nai-Shun Liao
Yi-Fan Chou
Chun-Yi Hsu
Yu-Hui Liao
Mao-Wang Ho
Shih-Sheng Chang
Po-Ren Hsueh
Der-Yang Cho
Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning
Journal of Microbiology, Immunology and Infection
Raman spectroscopy
MALDI-TOF MS
Artificial intelligence
Machine learning
Species identification
title Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning
title_full Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning
title_fullStr Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning
title_full_unstemmed Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning
title_short Identification of Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii from Raman spectra by Artificial Intelligent Raman Detection and Identification System (AIRDIS) with machine learning
title_sort identification of staphylococcus aureus enterococcus faecium klebsiella pneumoniae pseudomonas aeruginosa and acinetobacter baumannii from raman spectra by artificial intelligent raman detection and identification system airdis with machine learning
topic Raman spectroscopy
MALDI-TOF MS
Artificial intelligence
Machine learning
Species identification
url http://www.sciencedirect.com/science/article/pii/S1684118224002202
work_keys_str_mv AT yutzulin identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT hsiuhsienlin identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT chihhaochen identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT kunhaotseng identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT pangchienhsu identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT yalunwu identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT weichengchang identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT naishunliao identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT yifanchou identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT chunyihsu identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT yuhuiliao identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT maowangho identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT shihshengchang identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT porenhsueh identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning
AT deryangcho identificationofstaphylococcusaureusenterococcusfaeciumklebsiellapneumoniaepseudomonasaeruginosaandacinetobacterbaumanniifromramanspectrabyartificialintelligentramandetectionandidentificationsystemairdiswithmachinelearning