MHC2-SCALE enhances identification of immunogenic neoantigens
Summary: Recent studies suggest that CD4+ T cells can exert potent anti-tumor effects and improve immunotherapy efficacy by aiding CD8+ T cells. However, characterizing the mechanism of CD4+ T cells’ anti-tumor activity has been challenging due to inaccurate major histocompatibility complex class II...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-04-01
|
| Series: | iScience |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004225004730 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: Recent studies suggest that CD4+ T cells can exert potent anti-tumor effects and improve immunotherapy efficacy by aiding CD8+ T cells. However, characterizing the mechanism of CD4+ T cells’ anti-tumor activity has been challenging due to inaccurate major histocompatibility complex class II (MHC-II) peptide prediction algorithms and the lack of high-quality reagents for immune monitoring. To address this, we developed MHC2—substitution of CLIP and analytical LCMS evaluation (MHC2-SCALE), a streamlined approach combining affinity optimized class II-associated invariant chain peptide (CLIP) exchange technology, high throughput 2D-LCMS analysis, and rapid generation of peptide-bound MHC-II monomers for subsequent multimer assembly. We validated MHC-II peptide candidates predicted by the immune epitope database (IEDB) algorithm, as well as uncovered many true and immunogenic MHC-II binders that were not predicted by IEDB. Thus, MHC2-SCALE expands the opportunities for discovering, tracking, and phenotyping antigen-specific CD4+ T cells in preclinical and clinical settings, thereby improving therapies for cancer, autoimmunity, or infectious diseases. |
|---|---|
| ISSN: | 2589-0042 |