Revealing Land-Use Dynamics on Thermal Environment of Riverine Cities Under Climate Variability Using Remote Sensing and Geospatial Techniques

Urbanized riverine cities in southern Asian developing countries face significant challenges in understanding the spatiotemporal thermal impacts of land use/land cover (LULC) changes driven by rapid urbanization and climatic variability. While previous studies have investigated factors influencing l...

Full description

Saved in:
Bibliographic Details
Main Authors: Nazia Iftakhar, Fakhrul Islam, Mohammad Izhar Hussain, Muhammad Nasar Ahmad, Jinwook Lee, Nazir Ur Rehman, Saleh Qaysi, Nassir Alarifi, Youssef M. Youssef
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:https://www.mdpi.com/2220-9964/14/1/13
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Urbanized riverine cities in southern Asian developing countries face significant challenges in understanding the spatiotemporal thermal impacts of land use/land cover (LULC) changes driven by rapid urbanization and climatic variability. While previous studies have investigated factors influencing land surface temperature (LST) variations, gaps persist in integrating Landsat imagery (7 and 8), meteorological data, and Geographic Information System (GIS) tools to evaluate the thermal effects of specific LULC types, including cooling and warming transitions, and their influence on air temperature under variable precipitation patterns. This study investigates LST variations in Islamabad, Pakistan, from 2000 to 2020 using quantile classification at three intervals (2000, 2010, 2020). The thermal contributions of each LULC type across the LST-based temperature classes were analyzed using the Land Contribution Index (LCI). Finally, Warming and Cooling Transition (WCT) maps were generated by intersecting LST classes with 2000 as the baseline. Results indicated a rise in LST from 32.39 °C in 2000 to 45.63 °C in 2020. The negative LCI values revealed that vegetation and water bodies in lower temperature zones (Ltc_1 to Ltc_3) contributed to cooling effects, while positive LCI values in built-up and bare land areas in higher temperature zones (Ltc_5–Ltc_7) exhibited warming effects. The WCT map showed a general warming trend (cold-to-hot type) from 2000 to 2020, particularly in newly urbanized areas due to a 49.63% population increase, while cooling effects (hot-to-cold type) emerged in the newly developed agricultural lands with a 46.46% rise in vegetation. The mean annual air temperature gap with LST narrowed from 11.55 °C in 2000 to 2.28 °C in 2020, reflecting increased precipitation due to increasing yearly rainfall from 982.88 mm in 2000 to 1365.47 mm in 2020. This change also coincided with an expansion of water bodies from 2.82 km<sup>2</sup> in 2000 to 6.35 km<sup>2</sup> in 2020, impacting the local climate and hydrology. These findings highlight the importance of green spaces and water management to mitigate urban heat and improve ecological health.
ISSN:2220-9964