Design of an Incremental Music Teaching and Assisted Therapy System Based on Artificial Intelligence Attention Mechanism

With the continuous updating and advancement of artificial intelligence technology, it gradually begins to shine in various industries, especially playing an increasingly important role in incremental music teaching and assisted therapy systems. This study designs artificial intelligence models from...

Full description

Saved in:
Bibliographic Details
Main Authors: Dapeng Li, Xiaoguang Liu
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Occupational Therapy International
Online Access:http://dx.doi.org/10.1155/2022/7117986
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832553577486221312
author Dapeng Li
Xiaoguang Liu
author_facet Dapeng Li
Xiaoguang Liu
author_sort Dapeng Li
collection DOAJ
description With the continuous updating and advancement of artificial intelligence technology, it gradually begins to shine in various industries, especially playing an increasingly important role in incremental music teaching and assisted therapy systems. This study designs artificial intelligence models from the perspectives of attention mechanism, contextual information guidance, and distant dependencies combined with incremental music teaching for the segmentation of MS (multiple sclerosis) lesions and achieves the automatic and accurate segmentation of MS lesions through the multidimensional analysis of multimodal magnetic resonance imaging data, which provides a basis for physicians to quantitatively analyze MS lesions, thus assisting them in the diagnosis and treatment of MS. To address the highly variable characteristics of MS lesion location, size, number, and shape, this paper firstly designs a 3D context-guided module based on Kronecker convolution to integrate lesion information from different fields of view, starting from lesion contextual information capture. Then, a 3D spatial attention module is introduced to enhance the representation of lesion features in MRI images. The experiments in this paper confirm that the context-guided module, cross-dimensional cross-attention module, and multidimensional feature similarity module designed for the characteristics of MS lesions are effective, and the proposed attentional context U-Net and multidimensional cross-attention U-Net have greater advantages in the objective evaluation index of lesion segmentation, while being combined with the incremental music teaching approach to assist treatment, which provides a new idea for the intelligent assisted treatment approach. In this paper, from algorithm design to experimental validation, both in terms of accuracy, the operational difficulty of the experiment, consumption of arithmetic power, and time cost, the unique superiority of the artificial intelligence attention-based combined with incremental music teaching adjunctive therapy system proposed in this paper can be seen in the MS lesion segmentation task.
format Article
id doaj-art-dea324181797434c85ecf9d8ccf1495a
institution Kabale University
issn 1557-0703
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Occupational Therapy International
spelling doaj-art-dea324181797434c85ecf9d8ccf1495a2025-02-03T05:53:49ZengWileyOccupational Therapy International1557-07032022-01-01202210.1155/2022/7117986Design of an Incremental Music Teaching and Assisted Therapy System Based on Artificial Intelligence Attention MechanismDapeng Li0Xiaoguang Liu1Department of Music and DanceChangzhi Medical CollegeWith the continuous updating and advancement of artificial intelligence technology, it gradually begins to shine in various industries, especially playing an increasingly important role in incremental music teaching and assisted therapy systems. This study designs artificial intelligence models from the perspectives of attention mechanism, contextual information guidance, and distant dependencies combined with incremental music teaching for the segmentation of MS (multiple sclerosis) lesions and achieves the automatic and accurate segmentation of MS lesions through the multidimensional analysis of multimodal magnetic resonance imaging data, which provides a basis for physicians to quantitatively analyze MS lesions, thus assisting them in the diagnosis and treatment of MS. To address the highly variable characteristics of MS lesion location, size, number, and shape, this paper firstly designs a 3D context-guided module based on Kronecker convolution to integrate lesion information from different fields of view, starting from lesion contextual information capture. Then, a 3D spatial attention module is introduced to enhance the representation of lesion features in MRI images. The experiments in this paper confirm that the context-guided module, cross-dimensional cross-attention module, and multidimensional feature similarity module designed for the characteristics of MS lesions are effective, and the proposed attentional context U-Net and multidimensional cross-attention U-Net have greater advantages in the objective evaluation index of lesion segmentation, while being combined with the incremental music teaching approach to assist treatment, which provides a new idea for the intelligent assisted treatment approach. In this paper, from algorithm design to experimental validation, both in terms of accuracy, the operational difficulty of the experiment, consumption of arithmetic power, and time cost, the unique superiority of the artificial intelligence attention-based combined with incremental music teaching adjunctive therapy system proposed in this paper can be seen in the MS lesion segmentation task.http://dx.doi.org/10.1155/2022/7117986
spellingShingle Dapeng Li
Xiaoguang Liu
Design of an Incremental Music Teaching and Assisted Therapy System Based on Artificial Intelligence Attention Mechanism
Occupational Therapy International
title Design of an Incremental Music Teaching and Assisted Therapy System Based on Artificial Intelligence Attention Mechanism
title_full Design of an Incremental Music Teaching and Assisted Therapy System Based on Artificial Intelligence Attention Mechanism
title_fullStr Design of an Incremental Music Teaching and Assisted Therapy System Based on Artificial Intelligence Attention Mechanism
title_full_unstemmed Design of an Incremental Music Teaching and Assisted Therapy System Based on Artificial Intelligence Attention Mechanism
title_short Design of an Incremental Music Teaching and Assisted Therapy System Based on Artificial Intelligence Attention Mechanism
title_sort design of an incremental music teaching and assisted therapy system based on artificial intelligence attention mechanism
url http://dx.doi.org/10.1155/2022/7117986
work_keys_str_mv AT dapengli designofanincrementalmusicteachingandassistedtherapysystembasedonartificialintelligenceattentionmechanism
AT xiaoguangliu designofanincrementalmusicteachingandassistedtherapysystembasedonartificialintelligenceattentionmechanism