Advanced Computing Approach for Modeling and Prediction COVID-19 Pandemic
The emergence of many strains of the coronavirus, including the latest omicron strain, which is spreading at a very high speed, is leading to the World Health Organization’s (WHO) concern about the creation of this new mutation. Therefore, there is a strong motivation for modeling and predicting COV...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Applied Bionics and Biomechanics |
Online Access: | http://dx.doi.org/10.1155/2022/6056574 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The emergence of many strains of the coronavirus, including the latest omicron strain, which is spreading at a very high speed, is leading to the World Health Organization’s (WHO) concern about the creation of this new mutation. Therefore, there is a strong motivation for modeling and predicting COVID-19 to control the number of cases of the disease. The proposed system for predicting the number of cases of COVID-19 can help governments take precautions to prevent the spread of the disease. In this paper, a statistical logistic growth model was employed to predict the spread of COVID-19 in Australia and Brazil. The datasets were collected from the surveillance systems in Australia and Brazil from March 13, 2020, to December 12, 2021, for 641 days. This proposed method used a tested logistic growth model for the complex spread of COVID-19 and forecasted future values within a time interval of six days. The results of the predicted, cumulative, confirmed cases indicate the robustness and effectiveness of the proposed system, which was categorized by time-dependent dynamics. The coefficient of determination (R) metric was used to evaluate the model to predict COVID-19, and the proposed system scored the highest correlation (R2=99%). The proposed system has the potential to contribute to public health by making decisions about how to prevent the spread of COVID-19. |
---|---|
ISSN: | 1754-2103 |