Adjusting U-Net for the aortic abdominal aneurysm CT segmentation case

In this paper, we address the issue of developing of a convolutional neural network for the problem of aneurysm segmentation into three classes and of exploring ways for improving the quality of final segmentation masks. As a result of our study, macro dice score for classes of interest reaches 83.1...

Full description

Saved in:
Bibliographic Details
Main Authors: R.U. Epifanov, N.A. Nikitin, A.A. Rabtsun, L.N. Kurdyukov, A.A. Karpenko, R.I. Mullyadzhanov
Format: Article
Language:English
Published: Samara National Research University 2024-06-01
Series:Компьютерная оптика
Subjects:
Online Access:https://www.computeroptics.ru/KO/Annot/KO48-3/480312.html
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832086544266035200
author R.U. Epifanov
N.A. Nikitin
A.A. Rabtsun
L.N. Kurdyukov
A.A. Karpenko
R.I. Mullyadzhanov
author_facet R.U. Epifanov
N.A. Nikitin
A.A. Rabtsun
L.N. Kurdyukov
A.A. Karpenko
R.I. Mullyadzhanov
author_sort R.U. Epifanov
collection DOAJ
description In this paper, we address the issue of developing of a convolutional neural network for the problem of aneurysm segmentation into three classes and of exploring ways for improving the quality of final segmentation masks. As a result of our study, macro dice score for classes of interest reaches 83.12% ± 4.27%. We explored different augmentation styles and showed the importance of applying intensity augmentation style to improve segmentation algorithm robustness in conditions of clinical data diversity. Augmentation with spatial and insensitive styles increase macro dice score up to 3%. The comparison of various inference mode indicate that combination of overlapping inference and segmentation window enlargement ameliorate macro dice up to 1.4%. Overall improvement of the quality of segmentation masks by macro dice score amounted up to 6% using combination of data-based augmentation style and advanced inference technique.
format Article
id doaj-art-de95137568cd4de5ae4a8373ba026123
institution Kabale University
issn 0134-2452
2412-6179
language English
publishDate 2024-06-01
publisher Samara National Research University
record_format Article
series Компьютерная оптика
spelling doaj-art-de95137568cd4de5ae4a8373ba0261232025-02-06T12:21:37ZengSamara National Research UniversityКомпьютерная оптика0134-24522412-61792024-06-0148341842410.18287/2412-6179-CO-1338Adjusting U-Net for the aortic abdominal aneurysm CT segmentation caseR.U. Epifanov0N.A. Nikitin1A.A. Rabtsun2L.N. Kurdyukov3A.A. Karpenko4R.I. Mullyadzhanov5Novosibirsk State UniversityMeshalkin National Medical Research CenterNovosibirsk State Medical UniversityNovosibirsk State Medical UniversityMeshalkin National Medical Research CenterNovosibirsk State University; Institute of Thermophysics SB RASIn this paper, we address the issue of developing of a convolutional neural network for the problem of aneurysm segmentation into three classes and of exploring ways for improving the quality of final segmentation masks. As a result of our study, macro dice score for classes of interest reaches 83.12% ± 4.27%. We explored different augmentation styles and showed the importance of applying intensity augmentation style to improve segmentation algorithm robustness in conditions of clinical data diversity. Augmentation with spatial and insensitive styles increase macro dice score up to 3%. The comparison of various inference mode indicate that combination of overlapping inference and segmentation window enlargement ameliorate macro dice up to 1.4%. Overall improvement of the quality of segmentation masks by macro dice score amounted up to 6% using combination of data-based augmentation style and advanced inference technique.https://www.computeroptics.ru/KO/Annot/KO48-3/480312.htmlabdominal aortic aneurysmneural networksemantic segmentationcalcifications
spellingShingle R.U. Epifanov
N.A. Nikitin
A.A. Rabtsun
L.N. Kurdyukov
A.A. Karpenko
R.I. Mullyadzhanov
Adjusting U-Net for the aortic abdominal aneurysm CT segmentation case
Компьютерная оптика
abdominal aortic aneurysm
neural network
semantic segmentation
calcifications
title Adjusting U-Net for the aortic abdominal aneurysm CT segmentation case
title_full Adjusting U-Net for the aortic abdominal aneurysm CT segmentation case
title_fullStr Adjusting U-Net for the aortic abdominal aneurysm CT segmentation case
title_full_unstemmed Adjusting U-Net for the aortic abdominal aneurysm CT segmentation case
title_short Adjusting U-Net for the aortic abdominal aneurysm CT segmentation case
title_sort adjusting u net for the aortic abdominal aneurysm ct segmentation case
topic abdominal aortic aneurysm
neural network
semantic segmentation
calcifications
url https://www.computeroptics.ru/KO/Annot/KO48-3/480312.html
work_keys_str_mv AT ruepifanov adjustingunetfortheaorticabdominalaneurysmctsegmentationcase
AT nanikitin adjustingunetfortheaorticabdominalaneurysmctsegmentationcase
AT aarabtsun adjustingunetfortheaorticabdominalaneurysmctsegmentationcase
AT lnkurdyukov adjustingunetfortheaorticabdominalaneurysmctsegmentationcase
AT aakarpenko adjustingunetfortheaorticabdominalaneurysmctsegmentationcase
AT rimullyadzhanov adjustingunetfortheaorticabdominalaneurysmctsegmentationcase