Kreĭn's trace formula and the spectral shift function

Let A,B be two selfadjoint operators whose difference B−A is trace class. Kreĭn proved the existence of a certain function ξ∈L1(ℝ) such that tr[f(B)−f(A)]=∫ℝf′(x)ξ(x)dx for a large set of functions f. We give here a new proof of this result and discuss the class of admissible functions. Our proof is...

Full description

Saved in:
Bibliographic Details
Main Author: Khristo N. Boyadzhiev
Format: Article
Language:English
Published: Wiley 2001-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/S0161171201004318
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let A,B be two selfadjoint operators whose difference B−A is trace class. Kreĭn proved the existence of a certain function ξ∈L1(ℝ) such that tr[f(B)−f(A)]=∫ℝf′(x)ξ(x)dx for a large set of functions f. We give here a new proof of this result and discuss the class of admissible functions. Our proof is based on the integral representation of harmonic functions on the upper half plane and also uses the Baker-Campbell-Hausdorff formula.
ISSN:0161-1712
1687-0425