Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions

Mathematical models are well-established as metaphors for biological and epidemiological systems. The framework of epidemic modeling has also been applied to sociological phenomena driven by peer pressure, notably in two dozen dynamical systems research projects developed through the Mathematical a...

Full description

Saved in:
Bibliographic Details
Main Author: Christopher M. Kribs-Zaleta
Format: Article
Language:English
Published: AIMS Press 2013-07-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2013.10.1587
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mathematical models are well-established as metaphors for biological and epidemiological systems. The framework of epidemic modeling has also been applied to sociological phenomena driven by peer pressure, notably in two dozen dynamical systems research projects developed through the Mathematical and Theoretical Biology Institute, and popularized by authors such as Gladwell (2000). This article reviews these studies and their common structures, and identifies a new mathematical metaphor which uses multiple nonlinearities to describe the multiple thresholds governing the persistence of hierarchical phenomena, including the situation termed a ``backward bifurcation'' in mathematical epidemiology, where established phenomena can persist in circumstances under which the phenomena could not initially emerge.
ISSN:1551-0018