Cyclic Training of Dual Deep Neural Networks for Discovering User and Item Latent Traits in Recommendation Systems
Recommendation systems face the complex challenge of modeling high-dimensional interactions between users and items to deliver personalized recommendations. This paper introduces Cyclic Dual Latent Discovery (CDLD), a novel method that employs dual deep neural networks (DNNs) in a cyclic training pr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10829575/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|