Hybrid Filtered-x Adaptive Vibration Control with Internal Feedback and Online Identification

Active control is an effective way to suppress low-frequency mechanical vibration. However, with applications to submarine equipment, there are still some shortcomings due to vibration coupling and multifrequency complex excitation. In this paper, a novel hybrid improved adaptive control strategy, f...

Full description

Saved in:
Bibliographic Details
Main Authors: Lihua Yang, Shuyong Liu, Haipeng Zhang, Haiping Wu, Haifeng Li, Jian Jiang
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2018/9010567
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Active control is an effective way to suppress low-frequency mechanical vibration. However, with applications to submarine equipment, there are still some shortcomings due to vibration coupling and multifrequency complex excitation. In this paper, a novel hybrid improved adaptive control strategy, feedback and online identification filtered-x LMS, namely, FOFxlms, is proposed, which introduces the residual errors to correct variable step-size, uses the estimated primary path to improve online identification, and applies internal feedback to compensate for the feedforward control. Then the FOFxlms algorithm is applied to a double-layer vibration isolation system of submarine rotating equipment, and the simulation results show that the normalized variable step-size with residual error can effectively improve convergence speed, the internal feedback can efficaciously compensate for steady-state control accuracy, and the online identification can dynamically identify the time-varying characteristics of the secondary path. The vibration reduction efficiency of Fxlms, FFxlms, and FOFxlms increases for the fundamental frequency vibration; the control effect and convergence speed are also enhanced in turn.
ISSN:1070-9622
1875-9203