Synthesis of an Insulated Oligo(phenylene ethynylene) Dimer Through Cyclodextrin-Based [<i>c</i>2]Daisy Chain Rotaxane
Oligo(phenylene ethynylene)s (OPEs) are π-conjugated systems with promising optical, bioactive, and electrical properties, making them valuable candidates for molecular electronics and biosensors. Controlling the arrangement and orientation of π-conjugated systems is crucial in developing molecular...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-10-01
|
| Series: | Molbank |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1422-8599/2024/4/M1906 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Oligo(phenylene ethynylene)s (OPEs) are π-conjugated systems with promising optical, bioactive, and electrical properties, making them valuable candidates for molecular electronics and biosensors. Controlling the arrangement and orientation of π-conjugated systems is crucial in developing molecular devices. Recently, we developed insulated diarylacetylene dimers using a [<i>c</i>2]daisy chain rotaxane strategy, which brings two cores into close proximity without covalent bonding and shields them with permethylated α-cyclodextrins. Here, we synthesized an insulated OPE dimer using a similar rotaxane strategy to investigate its optical properties. The rotaxane structure and optical properties were evaluated using nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization high-resolution mass spectrometry (ESI-HRMS), and absorption and fluorescence spectroscopy. This study is expected to contribute to the development of optical and electronic materials utilizing OPEs. |
|---|---|
| ISSN: | 1422-8599 |