Finite Element Modeling of K-Monel Bolts under Static Loading and Dynamic Shock Loading

The Naval Undersea Warfare Center has funded a project to investigate the accuracy of various bolt models used to represent actual shipboard bolted connections within an analytical shock survivability assessment. The ultimate goal within this project is to develop finite element bolt representations...

Full description

Saved in:
Bibliographic Details
Main Authors: Kevin Behan, Emily Guzas, Jeffrey Milburn, Stacy Moss
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.3233/SAV-130769
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Naval Undersea Warfare Center has funded a project to investigate the accuracy of various bolt models used to represent actual shipboard bolted connections within an analytical shock survivability assessment. The ultimate goal within this project is to develop finite element bolt representations that are not only computationally efficient, but also accurate. A significant task within this effort involved the development of highly detailed finite element models of bolted connections under various load configurations. Accordingly, high-resolution bolt models were developed and incorporated into simulations of four bolted connection test arrangements: static shear, static tension, dynamic shear, and dynamic tension. These simulation results are validated against experimental data from physical testing of each configuration. Future research will focus on exploring simplified finite element bolt representations and comparing these against the high-resolution results.
ISSN:1070-9622
1875-9203