Capacitance–Voltage Studies on Electrostatically Actuated MEMS Micromirror Arrays
This article presents the electrostatic actuation performance of micromirror arrays for intelligent active daylight control and energy management in green buildings using a capacitive–voltage (C-V) measurement technique. In order to understand how geometric hinge parameters, initial opening angles,...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/16/2/157 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This article presents the electrostatic actuation performance of micromirror arrays for intelligent active daylight control and energy management in green buildings using a capacitive–voltage (C-V) measurement technique. In order to understand how geometric hinge parameters, initial opening angles, and materials affect the overall efficiency and functionality of the system, micromirror arrays have been analyzed using C-V measurements considering (i) full and broken hinge structures, (ii) 90° and 130° initial tilt angles (Φ), and (iii) different material layer combinations. The measurement results indicate that both an increase in the Young’s modulus of the applied materials and increasing the initial tilt angles increase the threshold voltages during the closing process of the micromirrors. |
|---|---|
| ISSN: | 2072-666X |