How Do Changes in Grassland Phenology and Its Responses to Extreme Climatic Events in Central Asia?

Extreme climate events have become more frequent under global warming, significantly affecting vegetation phenology and carbon cycles in Central Asia. However, the mediating effects of intensity of compound drought and heat events (CDHEs) and compound moisture and heat events (CMHEs) on grassland ph...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinwei Wang, Jianhao Li, Jianghua Zheng, Liang Liu, Xiaojing Yu, Ruikang Tian, Mengxiang Xing
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Land
Subjects:
Online Access:https://www.mdpi.com/2073-445X/14/1/160
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Extreme climate events have become more frequent under global warming, significantly affecting vegetation phenology and carbon cycles in Central Asia. However, the mediating effects of intensity of compound drought and heat events (CDHEs) and compound moisture and heat events (CMHEs) on grassland phenology and their trends in the relative contributions to grassland phenology over time have remained unclear. Based on the calculation results of grassland phenology and compound events (CEs), this study used trend analysis, partial least squares regression structural equation modeling (PLS-SEM), and ridge regression analysis to investigate the mediating effect and the temporal trend in relative contribution of CEs to grassland phenology in Central Asia, and the magnitude of sensitivity of grassland phenology to CEs. This study revealed that the start of season (SOS) was advanced by 0.4 d·a<sup>−1</sup>, end of season (EOS) was delayed by 0.5 d·a<sup>−1</sup>, and length of season (LOS) extended by 0.8 d·a<sup>−1</sup> in 1982–2022. The duration of the CDHEs (0−37 days) was greater than that of the CMHEs (0−9 days) in Central Asia. The direct effects of CDHEs and CMHEs on grassland phenology were generally negative, except for the direct positive effect of CDHEs on LOS. The indirect effects of temperature and precipitation on grassland phenology through CDHEs and CMHEs were greater than their direct effects on phenology. The relative contribution of CDHEs to grassland phenology was consistently greater than that of CMHEs, and both the relative contribution curves showed a significant upward trend. The sensitivity of grassland phenology to CDHEs was higher than its sensitivity to CMHEs at 0.79 (SOS), 1.18 (EOS), and 0.72 (LOS). Our results emphasize the mediating effects of CDHEs and CMHEs on grassland phenology. Under the influence of CDHEs and CMHEs, the LOS will further lengthen in the future.
ISSN:2073-445X