Evaluation of Different Scenarios for Waste Heat Recovery in Proton Exchange Membrane Fuel Cells from Energy, Environmental, and Economic Aspects

This study evaluates the utilization of waste heat from a polymer electrolyte membrane fuel cell (PEMFC) across four scenarios: combined heat and power (CHP), combined cooling, heating, and power (CCHP), combined cooling and power (CCP), and hybrid power generation with an organic Rankine cycle (ORC...

Full description

Saved in:
Bibliographic Details
Main Authors: M. M. Etghani, S. Sadripour
Format: Article
Language:English
Published: Babol Noshirvani University of Technology 2025-07-01
Series:Iranica Journal of Energy and Environment
Subjects:
Online Access:https://www.ijee.net/article_210808_5e6ca2bb997483cf38a37444220a1164.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study evaluates the utilization of waste heat from a polymer electrolyte membrane fuel cell (PEMFC) across four scenarios: combined heat and power (CHP), combined cooling, heating, and power (CCHP), combined cooling and power (CCP), and hybrid power generation with an organic Rankine cycle (ORC). The methodology involves thermodynamic modelling and parametric analysis to assess energy efficiency, fuel savings, and environmental impact. The CCHP scenario demonstrates the highest overall system efficiency of 87%, achieving 46% fuel savings and a 55% reduction in CO₂ emissions. The ORC scenario, leveraging waste heat for hybrid power generation, achieves an electrical efficiency of 41% and an overall efficiency of 68%, with 26% fuel savings and a 49% CO₂ emissions reduction. This study reveals that integrating CCHP systems provides superior performance across energy, environmental, and economic metrics. The findings contribute to advancing sustainable energy systems by optimizing waste heat recovery, reducing emissions, and providing tailored solutions based on consumer demands and operational conditions.
ISSN:2079-2115
2079-2123