Feasibility analysis and development trend of nanomaterials for the treatment of pancreatic cancer

Abstract Pancreatic cancer is a highly aggressive disease that poses a significant threat to human health. Although conventional chemotherapy remains an effective treatment, it is often associated with severe side effects, underscoring the need for more effective cancer therapies. In this study, we...

Full description

Saved in:
Bibliographic Details
Main Authors: Jingyao Zhu, Yue Li, Xiaoqing Li, Yong Wang, Qixiang Liu, Yang Yang, HongJian Guan
Format: Article
Language:English
Published: Springer 2025-05-01
Series:Discover Nano
Subjects:
Online Access:https://doi.org/10.1186/s11671-025-04259-x
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Pancreatic cancer is a highly aggressive disease that poses a significant threat to human health. Although conventional chemotherapy remains an effective treatment, it is often associated with severe side effects, underscoring the need for more effective cancer therapies. In this study, we analyzed the keywords of past studies, the countries with the highest number of publications, the leading journals, prominent authors, and collaborations between countries, authors, and journals, as well as the impact factors of relevant literature. The aim was to explore the trends in the use of nanomaterials for the treatment of pancreatic cancer, enabling researchers to review past achievements and gain a better understanding of future research directions. Relevant research articles were sourced from core Web of Science databases, and VOSviewer and CiteSpace visualization tools were employed to reveal the intrinsic links between the information. Research on the use of nanomaterials for the therapy of pancreatic cancer has been growing since the twenty-first century, particularly from 2018 to the present. The United States has become a leader in this field, with the highest number of publications and the most published authors. Additionally, a 2018 study published in Nature demonstrated that patients with insufficient CD8 + T-cell infiltration in the pancreatic cancer tumor microenvironment (TME) had significantly lower survival rates (HR = 2.5, p < 0.001). And CSF1R inhibitors combined with a PD-1 antibody resulted in 60% tumor shrinkage in a mouse model. These findings suggest that research on the tumor microenvironment and immunotherapy is poised to be a key focus of future studies, offering new hope for pancreatic cancer patients. Graphical Abstract
ISSN:2731-9229