Finite-Time Control for Attitude Tracking Maneuver of Rigid Satellite

The problem of finite-time control for attitude tracking maneuver of a rigid spacecraft is investigated. External disturbance, unknown inertia parameters are addressed. As stepping stone, a sliding mode controller is designed. It requires the upper bound of the lumped uncertainty including disturban...

Full description

Saved in:
Bibliographic Details
Main Authors: Mingyi Huo, Xing Huo, Hamid Reza Karimi, Jianfei Ni
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/302982
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of finite-time control for attitude tracking maneuver of a rigid spacecraft is investigated. External disturbance, unknown inertia parameters are addressed. As stepping stone, a sliding mode controller is designed. It requires the upper bound of the lumped uncertainty including disturbance and inertia matrix. However, this upper bound may not be easily obtained. Therefore, an adaptive sliding mode control law is then proposed to release that drawback. Adaptive technique is applied to estimate that bound. It is proved that the closed-loop attitude tracking system is finite-time stable. The tracking errors of the attitude and the angular velocity are asymptotically stabilized. Moreover, the upper bound on the lumped uncertainty can be exactly estimated in finite time. The attitude tracking performance with application of the control scheme is evaluated through a numerical example.
ISSN:1085-3375
1687-0409