Locating real eigenvalues of a spectral problem in fluid-solid type structures
Exploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible visc...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2005-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/JAM.2005.37 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832562568510570496 |
---|---|
author | Heinrich Voss |
author_facet | Heinrich Voss |
author_sort | Heinrich Voss |
collection | DOAJ |
description | Exploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions. |
format | Article |
id | doaj-art-db77ddf153324ca7aa6126c9835bc9d7 |
institution | Kabale University |
issn | 1110-757X 1687-0042 |
language | English |
publishDate | 2005-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Applied Mathematics |
spelling | doaj-art-db77ddf153324ca7aa6126c9835bc9d72025-02-03T01:22:21ZengWileyJournal of Applied Mathematics1110-757X1687-00422005-01-0120051374810.1155/JAM.2005.37Locating real eigenvalues of a spectral problem in fluid-solid type structuresHeinrich Voss0Department of Mathematics, Technical University of Hamburg-Harburg, Hamburg 21071, GermanyExploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions.http://dx.doi.org/10.1155/JAM.2005.37 |
spellingShingle | Heinrich Voss Locating real eigenvalues of a spectral problem in fluid-solid type structures Journal of Applied Mathematics |
title | Locating real eigenvalues of a spectral problem in fluid-solid type structures |
title_full | Locating real eigenvalues of a spectral problem in fluid-solid type structures |
title_fullStr | Locating real eigenvalues of a spectral problem in fluid-solid type structures |
title_full_unstemmed | Locating real eigenvalues of a spectral problem in fluid-solid type structures |
title_short | Locating real eigenvalues of a spectral problem in fluid-solid type structures |
title_sort | locating real eigenvalues of a spectral problem in fluid solid type structures |
url | http://dx.doi.org/10.1155/JAM.2005.37 |
work_keys_str_mv | AT heinrichvoss locatingrealeigenvaluesofaspectralprobleminfluidsolidtypestructures |