Locating real eigenvalues of a spectral problem in fluid-solid type structures

Exploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible visc...

Full description

Saved in:
Bibliographic Details
Main Author: Heinrich Voss
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/JAM.2005.37
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832562568510570496
author Heinrich Voss
author_facet Heinrich Voss
author_sort Heinrich Voss
collection DOAJ
description Exploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions.
format Article
id doaj-art-db77ddf153324ca7aa6126c9835bc9d7
institution Kabale University
issn 1110-757X
1687-0042
language English
publishDate 2005-01-01
publisher Wiley
record_format Article
series Journal of Applied Mathematics
spelling doaj-art-db77ddf153324ca7aa6126c9835bc9d72025-02-03T01:22:21ZengWileyJournal of Applied Mathematics1110-757X1687-00422005-01-0120051374810.1155/JAM.2005.37Locating real eigenvalues of a spectral problem in fluid-solid type structuresHeinrich Voss0Department of Mathematics, Technical University of Hamburg-Harburg, Hamburg 21071, GermanyExploiting minmax characterizations for nonlinear and nonoverdamped eigenvalue problems, we prove the existence of a countable set of eigenvalues converging to ∞ and inclusion theorems for a rational spectral problem governing mechanical vibrations of a tube bundle immersed in an incompressible viscous fluid. The paper demonstrates that the variational characterization of eigenvalues is a powerful tool for studying nonoverdamped eigenproblems, and that the appropriate enumeration of the eigenvalues is of predominant importance, whereas the natural ordering of the eigenvalues may yield false conclusions.http://dx.doi.org/10.1155/JAM.2005.37
spellingShingle Heinrich Voss
Locating real eigenvalues of a spectral problem in fluid-solid type structures
Journal of Applied Mathematics
title Locating real eigenvalues of a spectral problem in fluid-solid type structures
title_full Locating real eigenvalues of a spectral problem in fluid-solid type structures
title_fullStr Locating real eigenvalues of a spectral problem in fluid-solid type structures
title_full_unstemmed Locating real eigenvalues of a spectral problem in fluid-solid type structures
title_short Locating real eigenvalues of a spectral problem in fluid-solid type structures
title_sort locating real eigenvalues of a spectral problem in fluid solid type structures
url http://dx.doi.org/10.1155/JAM.2005.37
work_keys_str_mv AT heinrichvoss locatingrealeigenvaluesofaspectralprobleminfluidsolidtypestructures