An Event-Driven Object Localization Method Assisted by Beacon Mobility and Directional Antennas

An event-driven object localization method based on directional antennas is proposed in this paper. First the event occurrence spot is divided into four sections. Then low altitude UAV (Unmanned Aerial Vehicle) is employed to deploy DAWSN (Wireless Sensor Networks for Disaster Assistance) for urgent...

Full description

Saved in:
Bibliographic Details
Main Authors: Qingsong Hu, Lixin Wu, Can Cao, Shen Zhang
Format: Article
Language:English
Published: Wiley 2015-06-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2015/134964
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An event-driven object localization method based on directional antennas is proposed in this paper. First the event occurrence spot is divided into four sections. Then low altitude UAV (Unmanned Aerial Vehicle) is employed to deploy DAWSN (Wireless Sensor Networks for Disaster Assistance) for urgent observation and communication. By means of a mobile anchor with four directional antennas and a GPS module, obstacle avoidance traverse in DAWSN is realized and the locations during mobility are broadcast. Unknown nodes take these locations as virtual anchors and project them onto a virtual motion path, and then the coordinates of unknown nodes are solved with extended directional localization method. This range-free method does not require plenty of anchor nodes and complicated computation. With small positioning error and large positionable node ratio (PNR), it allows the virtual anchor to move along any curve path and can be utilized under the event-driven scenario to provide self-localization for DAWSN.
ISSN:1550-1477