Emergence of spatial patterns in a mathematical model for the co-culture dynamics of epithelial-like and mesenchymal-like cells

Accumulating evidence indicates that the interaction between epithelial and mesenchymal cells plays a pivotal role in cancer development and metastasis formation. Here we propose an integro-differential model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Our model takes...

Full description

Saved in:
Bibliographic Details
Main Authors: Marcello Delitala, Tommaso Lorenzi
Format: Article
Language:English
Published: AIMS Press 2017-01-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2017006
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Accumulating evidence indicates that the interaction between epithelial and mesenchymal cells plays a pivotal role in cancer development and metastasis formation. Here we propose an integro-differential model for the co-culture dynamics of epithelial-like and mesenchymal-like cells. Our model takes into account the effects of chemotaxis, adhesive interactions between epithelial-like cells, proliferation and competition for nutrients. We present a sample of numerical results which display the emergence of spots, stripes and honeycomb patterns, depending on parameters and initial data. These simulations also suggest that epithelial-like and mesenchymal-like cells can segregate when there is little competition for nutrients. Furthermore, our computational results provide a possible explanation for how the concerted action between epithelial-cell adhesion and mesenchymal-cell spreading can precipitate the formation of ring-like structures, which resemble the fibrous capsules frequently observed in hepatic tumours.
ISSN:1551-0018