Limit Theorems for the Non-Convex Multispecies Curie–Weiss Model

We study the thermodynamic properties of the generalized non-convex multispecies Curie–Weiss model, where interactions among different types of particles (forming the species) are encoded in a generic matrix. For spins with a generic prior distribution, we compute the thermodynamic limit of the gene...

Full description

Saved in:
Bibliographic Details
Main Authors: Francesco Camilli, Emanuele Mingione, Godwin Osabutey
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/8/1343
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the thermodynamic properties of the generalized non-convex multispecies Curie–Weiss model, where interactions among different types of particles (forming the species) are encoded in a generic matrix. For spins with a generic prior distribution, we compute the thermodynamic limit of the generating functional for the moments of the Boltzmann–Gibbs measure using simple interpolation techniques. For Ising spins, we further analyze the fluctuations of the magnetization in the thermodynamic limit under the Boltzmann–Gibbs measure. It is shown that a central limit theorem (CLT) holds for a rescaled and centered vector of species magnetizations, which converges to either a centered or non-centered multivariate normal distribution, depending on the rate of convergence of the relative sizes of the species.
ISSN:2227-7390